A comparative evaluation of the effect of SSI and Wx allelic variation on rice grain quality and starch physicochemical properties

2022 ◽  
Vol 371 ◽  
pp. 131205
Author(s):  
Changquan Zhang ◽  
Weizhuo Hao ◽  
Yan Lu ◽  
Yong Yang ◽  
Zhuanzhuan Chen ◽  
...  
Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 167 ◽  
Author(s):  
Kifayatullah Kakar ◽  
Tran Dang Xuan ◽  
Saidajan Abdiani ◽  
Imran Khan Wafa ◽  
Zubair Noori ◽  
...  

Rice is an important staple food for Afghans. Its production has been increased, and attention is needed to improve grain quality. Experiments were conducted to evaluate the growth, yield, physicochemical properties, antioxidant activity, and morphological structures of four exotic rice varieties widely grown in Afghanistan (Attai-1, Jalalabad-14, Shishambagh-14, and Zodrass). Antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), of rice grain were determined. A scanning electron microscopic observation was conducted on the cross-cut section of dehulled rice grains. The results showed a wide variation among four rice varieties for growth, grain yield, physicochemical properties, antioxidant activities, and morphology. Tiller and panicle number per hill, 1000-grain weight, grain yield, and antioxidant activities were found to be highest in Jalalabad-14. Attai-1 showed lower amylose, protein, and lipid contents with a high number of perfect grains, consequently enhanced taste point (score of quality). Grain yield, protein, and amylose contents showed a negative correlation with antioxidant activities. Accumulated structures in Attai-1, Shishambagh-14, and Zodrass were normal; however, Jalalabad-14 increased protein bodies and its traces in the amyloplasts. Information on yield potential, grain quality, and nutritional value of these exotic rice varieties may useful for sustainable food provision and nutritional improvement of rice in Afghanistan.


2020 ◽  
Vol 100 (15) ◽  
pp. 5344-5351
Author(s):  
Hui You ◽  
Ouling Zhang ◽  
Liang Xu ◽  
Cheng Liang ◽  
Xunchao Xiang

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 746
Author(s):  
Chae-Min Han ◽  
Jong-Hee Shin ◽  
Jung-Bae Kwon ◽  
Jong-Soo Kim ◽  
Jong-Gun Won ◽  
...  

Pre-harvest sprouting (PHS) severely reduces rice grain yield, significantly affects grain quality, and leads to substantial economic loss. In this study, we aimed to characterize the physicochemical properties and processing quality of the Garumi 2 flour rice variety under PHS conditions and compare them with those of the Seolgaeng, Hangaru, Shingil, and Ilpum rice varieties and the Keumkang wheat variety. Analysis of the molecular structure of starch revealed uniform starch granules, increased proportions of short-chain amylopectin in DP 6–12 (51.0–55.3%), and enhanced crystallinity (30.7–35.7%) in rice varieties for flour compared with the Ilpum cooking rice variety. PHS significantly altered the starch structure and gelatinization properties of Garumi 2. It also caused surface pitting and roughness in Garumi 2 starch granules and decreased their crystallinity. Collectively, the findings of this study provide important novel insights into the effects of PHS on the physicochemical properties of Garumi 2 floury rice for flour.


Author(s):  
Xiaorui Huang ◽  
Fei Su ◽  
Sheng Huang ◽  
Fating Mei ◽  
Xiaomu Niu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng-Kai Sun ◽  
Xuejie Xu ◽  
Zhong Tang ◽  
Zhu Tang ◽  
Xin-Yuan Huang ◽  
...  

AbstractRice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


Sign in / Sign up

Export Citation Format

Share Document