Antioxidant capacity and interaction of endogenous phenolic compounds from tea seed oil

2021 ◽  
pp. 131940
Author(s):  
Guoyan Liu ◽  
Wenqi Zhu ◽  
Sitong Li ◽  
Wanli Zhou ◽  
Huijuan Zhang ◽  
...  
2022 ◽  
Vol 371 ◽  
pp. 131122
Author(s):  
Guoyan Liu ◽  
Wenqi Zhu ◽  
Jie Zhang ◽  
Dandan Song ◽  
Linwu Zhuang ◽  
...  

2020 ◽  
Vol 85 (5) ◽  
pp. 1450-1461 ◽  
Author(s):  
Xiaoqin Wang ◽  
Wencong Jia ◽  
Guoyin Lai ◽  
Lijuan Wang ◽  
María Mar Contreras ◽  
...  

LWT ◽  
2021 ◽  
Vol 136 ◽  
pp. 110315
Author(s):  
Xiaoqin Wang ◽  
María del Mar Contreras ◽  
Dunming Xu ◽  
Wencong Jia ◽  
Lijuan Wang ◽  
...  

LWT ◽  
2020 ◽  
Vol 129 ◽  
pp. 109389 ◽  
Author(s):  
Xiaoqin Wang ◽  
María del Mar Contreras ◽  
Dunming Xu ◽  
Chen Xing ◽  
Lijuan Wang ◽  
...  

2018 ◽  
Vol 24 (1) ◽  
pp. 53-59
Author(s):  
Jong Min Kim ◽  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Seong-kyeong Bae ◽  
Ga-Hee Jeong ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 234 ◽  
Author(s):  
Yili Hong ◽  
Zening Wang ◽  
Colin J. Barrow ◽  
Frank R. Dunshea ◽  
Hafiz A. R. Suleria

Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 729
Author(s):  
Rosanna Ginocchio ◽  
Eduardo Muñoz-Carvajal ◽  
Patricia Velásquez ◽  
Ady Giordano ◽  
Gloria Montenegro ◽  
...  

The Mayten tree (Maytenus boaria Mol.), a native plant of Chile that grows under environmentally limiting conditions, was historically harvested to extract an edible oil, and may represent an opportunity to expand current vegetable oil production. Seeds were collected from Mayten trees in north-central Chile, and seed oil was extracted by solvent extraction. The seed oil showed a reddish coloration, with quality parameters similar to those of other vegetable oils. The fatty acid composition revealed high levels of monounsaturated and polyunsaturated fatty acids. Oleic and linoleic acids, which are relevant to the human diet, were well represented in the extracted Mayten tree seed oil. The oil displayed an antioxidant capacity due to the high contents of antioxidant compounds (polyphenols and carotenoids) and may have potential health benefits for diseases associated with oxidative stress.


2021 ◽  
Vol 348 ◽  
pp. 129063
Author(s):  
Susana Ferreyra ◽  
Carolina Torres-Palazzolo ◽  
Rubén Bottini ◽  
Alejandra Camargo ◽  
Ariel Fontana

Sign in / Sign up

Export Citation Format

Share Document