In vitro susceptibility of human gut microbes to potential food preservatives based on immobilized phenolic compounds

2022 ◽  
Vol 378 ◽  
pp. 132136
Author(s):  
María Ruiz-Rico ◽  
Simone Renwick ◽  
Emma Allen-Vercoe ◽  
José M. Barat
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Yadav ◽  
Avinash Lomash ◽  
Seema Kapoor ◽  
Rajesh Pandey ◽  
Nar Singh Chauhan

AbstractSodium benzoate is one of the widely used food preservatives and its metabolism in the human body has been studied only with the host perspective. Despite the human gut microbiome being considered as a virtual human organ, its role in benzoate metabolism is yet to be elucidated. The current study uses a multi-omic approach to rationalize the role of human gut microbes in benzoate metabolism. Microbial diversity analysis with multiple features synchronously indicates the dominance of Bacteroidetes followed by Firmicutes, Actinobacteria, and Proteobacteria. Metagenomic exploration highlights the presence of benzoate catabolic protein features. These features were mapped on to the aerobic and anaerobic pathways of benzoate catabolism. Benzoate catabolism assays identified statistically significant metabolites (P < 0.05) associated with the protocatechuate branch of the beta-ketoadipate pathway of the benzoate metabolism. Analysis of the 201 human gut metagenomic datasets across diverse populations indicates the omnipresence of these features. Enrichment of the benzoate catabolic protein features in human gut microbes rationalizes their role in benzoate catabolism, as well as indicates food-derived microbiome evolution.


2019 ◽  
Vol 64 (4) ◽  
pp. 497-508 ◽  
Author(s):  
Lucia Hrncirova ◽  
Tomas Hudcovic ◽  
Eliska Sukova ◽  
Vladimira Machova ◽  
Eva Trckova ◽  
...  

Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
K Sykłowska-Baranek ◽  
A Pietrosiuk ◽  
K Graikou ◽  
H Damianakos ◽  
M Jeziorek ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

1973 ◽  
Vol 30 (02) ◽  
pp. 334-338 ◽  
Author(s):  
Felisa C. Molinas

SummaryIt has been postulated that the high phenol and phenolic acids plasmatic levels found in patients with chronic renal failure are contributory factors in the abnormal platelet function described in these patients. This hypothesis was corroborated by “in vitro” studies showing the deleterious effect of these compounds on certain platelet function after pre-incubation of PRP with phenol and phenolic compounds. The present studies were conducted to determine the influence of phenolic compounds on platelet release reaction. It was found that phenol inhibited from 62.5 to 100% the effect of the aggregating agents thrombin, adrenaline and ADP on platelet 5-HT-14C release. The phenolic acids p-, m-, and o-HPAA inhibited from 36.35 to 94.8% adrenaline and ADP-induced platelet 5-HT-14C release. Adrenaline-induced platelet ADP release was inhibited from 27.45 to 38.10% by the phenolic compounds. These findings confirm the hypothesis that phenolic compounds interfere with platelet function through the inhibition of the release reaction.


Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


Sign in / Sign up

Export Citation Format

Share Document