Isolation of AmpC- and extended spectrum β-lactamase-producing Enterobacterales from fresh vegetables in the United States

Food Control ◽  
2022 ◽  
Vol 132 ◽  
pp. 108559
Author(s):  
Sun Hee Moon ◽  
Zulema Udaondo ◽  
Kaleb Z. Abram ◽  
Xinhui Li ◽  
Xu Yang ◽  
...  
Author(s):  
Jade L. L. Teng ◽  
Elaine Chan ◽  
Asher C. H. Dai ◽  
Gillian Ng ◽  
Tsz Tuen Li ◽  
...  

Both typhoidal and non-typhoidal salmonellae are included in the top 15 drug-resistant threats described by the Center for Disease Control and Prevention of the United States. There is an urgent need to look for alternative antibiotics for the treatment of Salmonella infections. We examined the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test. Of the 313 (52 typhoidal and 261 non-typhoidal) Salmonella isolates tested, 98.7% were susceptible to ceftolozane/tazobactam. Based on the overall MIC 50/90 values, Salmonella isolates were more susceptible to ceftolozane/tazobactam (0.25/0.5 mg/L) compared to all other comparator agents: ampicillin (≥64/≥64 mg/L), levofloxacin (0.25/1 mg/L), azithromycin (4/16 mg/L), ceftriaxone (≤0.25/4 mg/L), chloramphenicol (8/≥64 mg/L) and trimethoprim/sulfamethoxazole (1/≥8 mg/L). When comparing the activity of the antimicrobial agents against non-typhoidal Salmonella isolates according to their serogroup, ceftolozane/tazobactam had the highest activity (100%) against Salmonella serogroups D, G, I and Q isolates, whereas the lowest activity (85.7%) was observed against serogroup E isolates. All the 10 ESBL-producing Salmonella (all non-typhoidal) isolates, of which 8 were CTX-M-55-producers and 2 were CTX-M-65-producers, were sensitive to ceftolozane/tazobactam albeit with a higher MIC 50/90 value (1/2 mg/L) than non-ESBL-producers (0.25/0.5 mg/L). In summary, our data indicate that ceftolozane/tazobactam is active against most strains of both typhoidal and non-typhoidal salmonellae and also active against ESBL-producing salmonellae.


1996 ◽  
Vol 40 (5) ◽  
pp. 1260-1262 ◽  
Author(s):  
W C Ko ◽  
K W Yu ◽  
C Y Liu ◽  
C T Huang ◽  
H S Leu ◽  
...  

A total of 234 clinical isolates of Aeromonas, primarily A. hydrophila, were collected for the present study. Most were isolates from blood. By the agar dilution method, more than 90% of the Aeromonas strains were found to be susceptible to moxalactam, ceftazidime, cefepime, aztreonam, imipenem, amikacin, and fluoroquinolones, but they were more resistant to tetracycline, trimethoprim-sulfamethoxazole, some extended-spectrum cephalosporins, and aminoglycosides than strains from the United States and Australia.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S350-S351
Author(s):  
Michihiko Goto ◽  
Rajeshwari Nair ◽  
Daniel Livorsi ◽  
Marin Schweizer ◽  
Michael Ohl ◽  
...  

Abstract Background Extended-spectrum cephalosporin resistance (ESCR) among Enterobacteriaceae has emerged globally over the last two decades, with increased prevalence in the community. Data from European countries and healthcare-associated isolates in the United States have demonstrated substantial geographic variability in the prevalence of ESCR, but community-onset isolates in the United States have been less studied. We aimed to describe geographic distribution and spread of ESCR among outpatient settings across the Veterans Health Administration (VHA) over 18 years. Methods We analyzed a retrospective cohort of all patients who had any positive clinical culture specimen for ESCR Enterobacteriaceae collected in an outpatient setting; ESCR was defined by phenotypic nonsusceptibility to at least one extended-spectrum cephalosporin agent or detection of an extended-spectrum β-lactamase. Patient-level data were grouped by county of residence, and the total number of unique patients who received care within VHA for each county was used as a denominator. We aggregated data by time terciles (2000–2005, 2006–2011, and 2012–2017), and overall and county-level incidence rates were calculated as the number of unique patients in each year with ESCR Enterobacteriaceae per person-year. Results During the study period, there were 1,980,095 positive cultures for Enterobacteriaceae from 870,797 unique patients across outpatient settings of VHA, from a total of 107,404,504 person-years. Among those, 136,185 cultures (6.9%) from 75,500 unique patients (8.7%) were ESCR. The overall incidence rate was 9.0 cases per 10,000 person-years, which increased from 6.3 per 10,000 person-years in 2000 to 14.6 per 10,000 person-years in 2017. County-level incidence rates ranged widely but increased overall (interquartile range [IQR] in 2000–2005: 0–6.7; 2006–2011: 0–9.1; 2012–2017: 3.1–14.3 per 10,000 person-years), with some geographic clustering (figure). Conclusion This study demonstrates that there has been geographic variation both in incidence rates and trends of ESCR Enterobacteriaceae in outpatient settings of VHA, which suggests the importance of tailoring local antibiotic-prescribing guidelines incorporating geographic variability in epidemiology. Disclosures M. Ohl, Gilead Sciences, Inc.: Grant Investigator, Research grant.


2019 ◽  
Vol 6 (7) ◽  
Author(s):  
Ayesha Khan ◽  
Truc T Tran ◽  
Rafael Rios ◽  
Blake Hanson ◽  
William C Shropshire ◽  
...  

Abstract Background Treatment of serious infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa remains a challenge, despite the introduction of novel therapeutics. In this study, we report 2 extensively drug-resistant clinical isolates of sequence type (ST) 309 P aeruginosa resistant to all β-lactams, including the novel combinations ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam. Methods Isolates were sequenced using both short-read (Illumina) and long-read technology to identify resistance determinants, polymorphisms (compared with P aeruginosa PAO1), and reconstruct a phylogenetic tree. A pair of β-lactamases, Guiana extended spectrum β-lactamase (GES)-19 and GES-26, were cloned and expressed in a laboratory strain of Escherichia coli to examine their relative impact on resistance. Using cell lysates from E coli expressing the GES genes individually and in tandem, we determined relative rates of hydrolysis for nitrocefin and ceftazidime. Results Two ST309 P aeruginosa clinical isolates were found to harbor the extended spectrum β-lactamases GES-19 and GES-26 clustered in tandem on a chromosomal class 1 integron. The presence of both enzymes in E coli was associated with significantly elevated minimum inhibitory concentrations to aztreonam, cefepime, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam, compared with those expressed individually. The combination of ceftazidime/avibactam plus aztreonam was active in vitro and used to achieve cure in one patient. Phylogenetic analysis revealed ST309 P aeruginosa are closely related to MDR strains from Mexico also carrying tandem GES. Conclusions The presence of tandem GES-19 and GES-26 is associated with resistance to all β-lactams, including ceftolozane/tazobactam. Phylogenetic analysis suggests that ST309 P aeruginosa may be an emerging threat in the United States.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Shivdeep Singh Hayer ◽  
Seunghyun Lim ◽  
Samuel Hong ◽  
Ehud Elnekave ◽  
Timothy Johnson ◽  
...  

ABSTRACT Fluoroquinolones and cephalosporins are critically important antimicrobial classes for both human and veterinary medicine. We previously found a drastic increase in enrofloxacin resistance in clinical Escherichia coli isolates collected from diseased pigs from the United States over 10 years (2006 to 2016). However, the genetic determinants responsible for this increase have yet to be determined. The aim of the present study was to identify and characterize the genetic basis of resistance against fluoroquinolones (enrofloxacin) and extended-spectrum cephalosporins (ceftiofur) in swine E. coli isolates using whole-genome sequencing (WGS). blaCMY-2 (carried by IncA/C2, IncI1, and IncI2 plasmids), blaCTX-M (carried by IncF, IncHI2, and IncN plasmids), and blaSHV-12 (carried by IncHI2 plasmids) genes were present in 87 (82.1%), 19 (17.9%), and 3 (2.83%) of the 106 ceftiofur-resistant isolates, respectively. Of the 110 enrofloxacin-resistant isolates, 90 (81.8%) had chromosomal mutations in gyrA, gyrB, parA, and parC genes. Plasmid-mediated quinolone resistance genes [qnrB77, qnrB2, qnrS1, qnrS2, and aac-(6)-lb′-cr] borne on ColE, IncQ2, IncN, IncF, and IncHI2 plasmids were present in 24 (21.8%) of the enrofloxacin-resistant isolates. Virulent IncF plasmids present in swine E. coli isolates were highly similar to epidemic plasmids identified globally. High-risk E. coli clones, such as ST744, ST457, ST131, ST69, ST10, ST73, ST410, ST12, ST127, ST167, ST58, ST88, ST617, ST23, etc., were also found in the U.S. swine population. Additionally, the colistin resistance gene (mcr-9) was present in several isolates. This study adds valuable information regarding resistance to critical antimicrobials with implications for both animal and human health. IMPORTANCE Understanding the genetic mechanisms conferring resistance is critical to design informed control and preventive measures, particularly when involving critically important antimicrobial classes such as extended-spectrum cephalosporins and fluoroquinolones. The genetic determinants of extended-spectrum cephalosporin and fluoroquinolone resistance were highly diverse, with multiple plasmids, insertion sequences, and genes playing key roles in mediating resistance in swine Escherichia coli. Plasmids assembled in this study are known to be disseminated globally in both human and animal populations and environmental samples, and E. coli in pigs might be part of a global reservoir of key antimicrobial resistance (AMR) elements. Virulent plasmids found in this study have been shown to confer fitness advantages to pathogenic E. coli strains. The presence of international, high-risk zoonotic clones provides worrisome evidence that resistance in swine isolates may have indirect public health implications, and the swine population as a reservoir for these high-risk clones should be continuously monitored.


1997 ◽  
Vol 9 (2) ◽  
pp. 57-71 ◽  
Author(s):  
Zhikang You ◽  
Chung L. Huang ◽  
James E. Epperson

2011 ◽  
Vol 55 (12) ◽  
pp. 5666-5675 ◽  
Author(s):  
Bashar W. Shaheen ◽  
Rajesh Nayak ◽  
Steven L. Foley ◽  
Ohgew Kweon ◽  
Joanna Deck ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESC) among members of the familyEnterobacteriaceaeoccurs worldwide; however, little is known about ESC resistance inEscherichia colistrains from companion animals. Clinical isolates ofE. coliwere collected from veterinary diagnostic laboratories throughout the United States from 2008 to 2009.E. coliisolates (n= 54) with reduced susceptibility to ceftazidime or cefotaxime (MIC ≥ 16 μg/ml) and extended-spectrum-β-lactamase (ESBL) phenotypes were analyzed. PCR and sequencing were used to detect mutations in ESBL-encoding genes and the regulatory region of the chromosomal geneampC. Conjugation experiments and plasmid identification were conducted to examine the transferability of resistance to ESCs. All isolates carried theblaCTX-M-1-group β-lactamase genes in addition to one or more of the following β-lactamase genes:blaTEM,blaSHV-3,blaCMY-2,blaCTX-M-14-like, andblaOXA-1.DifferentblaTEMsequence variants were detected in some isolates (n= 40). Three isolates harbored ablaTEM-181gene with a novel mutation resulting in an Ala184Val substitution. Approximately 78% of the isolates had mutations in promoter/attenuator regions of the chromosomal geneampC, one of which was a novel insertion of adenine between bases −28 and −29. Plasmids ranging in size from 11 to 233 kbp were detected in the isolates, with a common plasmid size of 93 kbp identified in 60% of isolates. Plasmid-mediated transfer of β-lactamase genes increased the MICs (≥16-fold) of ESCs for transconjugants. Replicon typing among isolates revealed the predominance of IncI and IncFIA plasmids, followed by IncFIB plasmids. This study shows the emergence of conjugative plasmid-borne ESBLs amongE. colistrains from companion animals in the United States, which may compromise the effective therapeutic use of ESCs in veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document