High-pressure carbon dioxide treatment alleviates browning development by regulating membrane lipid metabolism in fresh-cut lettuce

Food Control ◽  
2021 ◽  
pp. 108749
Author(s):  
Wanlu Ma ◽  
Jiaxing Li ◽  
Ayesha Murtaza ◽  
Aamir Iqbal ◽  
Jiao Zhang ◽  
...  
2011 ◽  
Vol 12 (3) ◽  
pp. 298-304 ◽  
Author(s):  
Xiufang Bi ◽  
Jihong Wu ◽  
Yan Zhang ◽  
Zenghui Xu ◽  
Xiaojun Liao

2013 ◽  
Vol 79 ◽  
pp. 92-100 ◽  
Author(s):  
Sara Spilimbergo ◽  
Drazenka Komes ◽  
Aleksandra Vojvodic ◽  
Branka Levaj ◽  
Giovanna Ferrentino

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3484-3494
Author(s):  
Sumarno ◽  
Prida Novarita Trisanti ◽  
Bramantyo Airlangga ◽  
Novi Eka Mayangsari ◽  
Agus Haryono

Cellulose processing by a hydrothermal process as well as in combination with a sonication pretreatment under a CO2 pressurization that affects the morphology and reducing sugar products.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3078
Author(s):  
Irina A. Guschina ◽  
Natalia Ninkina ◽  
Andrei Roman ◽  
Mikhail V. Pokrovskiy ◽  
Vladimir L. Buchman

Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson’s disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.


2021 ◽  
Vol 22 (4) ◽  
pp. 2174
Author(s):  
Liang Lin ◽  
Junchao Ma ◽  
Qin Ai ◽  
Hugh W. Pritchard ◽  
Weiqi Li ◽  
...  

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


Sign in / Sign up

Export Citation Format

Share Document