Decline in nutrient inputs from litterfall following forest plantation in subtropical China

2021 ◽  
Vol 496 ◽  
pp. 119445
Author(s):  
Xiangyin Ni ◽  
Chengfang Lin ◽  
Guangshui Chen ◽  
Jinsheng Xie ◽  
Zhijie Yang ◽  
...  
2010 ◽  
Vol 2009 (5) ◽  
pp. 655-659 ◽  
Author(s):  
Peipei GUO ◽  
Hong JIANG ◽  
Shuquan YU ◽  
Yuandan MA ◽  
Rongpeng DOU ◽  
...  

1997 ◽  
Vol 32 (4) ◽  
pp. 733-750
Author(s):  
R. Mark Palmer

Abstract Sewage treatment studies at the watershed scale, compared to case-by-case community projects, ensures the most cost-efficient investment of funds commensurate with environmental requirements to sustain growth. A three-year environmental assessment study for the town of New Tecumseth, Ontario, examined all nutrient inputs to the Nottawasaga River watershed. Other challenging watershed constraints were investigated, such as stream and river flow takings for irrigation and sediment transport, prior to the selection of the master sewage treatment plan. The findings from the field research and computer modelling were used to (1) place a realistic perspective on nutrient impacts, present and future, attributable to treated sewage effluent; (2) design a master plan that could be used as an opportunity in terms of reusing the effluent locally for agricultural irrigation; (3) provide a real-time assurance of the plan’s performance/compliance, based on the actual carrying capacity of the aquatic ecosystem; (4) stage the construction of the plan in a cost-effective and environmentally sound manner; and (5) recommend a water resources management strategy to control other nutrient and sediment load sources within the watershed. The recommended master sewage treatment plan and water resources management strategy can restore the Ministry of Environment and Energy provincial water quality objective concentration for total phosphorus within the river during 7Q20 flow conditions.


2021 ◽  
Author(s):  
Yi Li ◽  
Douglas Chesters ◽  
Ming‐Qiang Wang ◽  
Tesfaye Wubet ◽  
Andreas Schuldt ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhi Wang ◽  
Caihong Zhong ◽  
Dawei Li ◽  
Chunlin Yan ◽  
Xiaohong Yao ◽  
...  

Abstract Background Plant phylogeographic studies of species in subtropical China have mainly focused on rare and endangered species, whereas few studies have been conducted on taxa with relatively wide distribution, especially polyploid species. We investigated the cytotype and haplotype distribution pattern of the Actinidia chinensis complex, a widespread geographically woody liana with variable ploidy in subtropical China comprising two varieties, with three chloroplast fragments DNA (ndhF-rpl132, rps16-trnQ and trnE-trnT). Macroevolutionary, microevolutionary and niche modeling tools were also combined to disentangle the origin and the demographic history of the species or cytotypes. Results The ploidy levels of 3338 individuals from 128 populations sampled throughout the species distribution range were estimated with flow cytometry. The widespread cytotypes were diploids followed by tetraploids and hexaploids, whereas triploids and octoploids occurred in a few populations. Thirty-one chloroplast haplotypes were detected. The genetic diversity and genetic structure were found to be high between varieties (or ploidy races) chinensis and deliciosa. Our results revealed that these two varieties inhabit significantly different climatic niche spaces. Ecological niche models (ENMs) indicate that all varieties’ ranges contracted during the Last Inter Glacial (LIG), and expanded eastward or northward during the Last Glacial Maximum (LGM). Conclusions Pliocene and Plio-Pleistocene climatic fluctuations and vicariance appear to have played key roles in shaping current population structure and historical demography in the A. chinensis complex. The polyploidization process also appears to have played an important role in the historical demography of the complex through improving their adaptability to environmental changes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Keyan Fang ◽  
Qichao Yao ◽  
Zhengtang Guo ◽  
Ben Zheng ◽  
Jianhua Du ◽  
...  

AbstractChina is a key region for understanding fire activity and the drivers of its variability under strict fire suppression policies. Here, we present a detailed fire occurrence dataset for China, the Wildfire Atlas of China (WFAC; 2005–2018), based on continuous monitoring from multiple satellites and calibrated against field observations. We find that wildfires across China mostly occur in the winter season from January to April and those fire occurrences generally show a decreasing trend after reaching a peak in 2007. Most wildfires (84%) occur in subtropical China, with two distinct clusters in its southwestern and southeastern parts. In southeastern China, wildfires are mainly promoted by low precipitation and high diurnal temperature ranges, the combination of which dries out plant tissue and fuel. In southwestern China, wildfires are mainly promoted by warm conditions that enhance evaporation from litter and dormant plant tissues. We further find a fire occurrence dipole between southwestern and southeastern China that is modulated by the El Niño-Southern Oscillation (ENSO).


Sign in / Sign up

Export Citation Format

Share Document