Redox-dependent metabolic remodeling of white adipose tissue during cold acclimation: The role of Nrf2

2021 ◽  
Vol 177 ◽  
pp. S105
Author(s):  
Tamara Zakic ◽  
Marta Budnar ◽  
Strahinja Djuric ◽  
Andjelika Kalezic ◽  
Aleksandra Korac ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Aleksandra Jankovic ◽  
Aleksandra Korac ◽  
Biljana Buzadzic ◽  
Vesna Otasevic ◽  
Ana Stancic ◽  
...  

The expression profiles of adiponectin, resistin, 5′-AMP-activated protein kinaseα(AMPKα), hypoxia-inducible factor-1α(HIF-1α), and key enzymes of glucose and fatty acid metabolism and oxidative phosphorylation in rat retroperitoneal white adipose tissue (RpWAT) during 45-day cold acclimation were examined. After transient suppression on day 1, adiponectin protein level increased following sustained cold exposure. In parallel, on day 1, the protein level of HIF-1αwas strongly induced and AMPKαsuppressed, while afterwards the reverse was seen. What is more, after an initial decrease on day 1, a sequential increase in pyruvate dehydrogenase, acyl-CoA dehydrogenase, cytochromecoxidase, and ATP synthase and a decrease in acetyl-CoA carboxylase (from day 3) were observed. Similar to adiponectin, protein level of resistin showed a biphasic profile: it increased after days 1, 3, and 7 and decreased below the control after 21 days of cold-acclimation. In summary, the data suggest that adiponectin and resistin are important integrators of RpWAT metabolic response and roles it plays during cold acclimation. It seems that AMPKαmediate adiponectin effects on metabolic remodeling RpWAT during cold acclimation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5560
Author(s):  
Alejandro Álvarez-Artime ◽  
Belén García-Soler ◽  
Rosa María Sainz ◽  
Juan Carlos Mayo

In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.


GeroScience ◽  
2021 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Timo Törmäkangas ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
...  

AbstractAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


2004 ◽  
Vol 92 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Paul Trayhurn ◽  
I. Stuart Wood

White adipose tissue is now recognised to be a multifunctional organ; in addition to the central role of lipid storage, it has a major endocrine function secreting several hormones, notably leptin and adiponectin, and a diverse range of other protein factors. These various protein signals have been given the collective name ‘adipocytokines’ or ‘adipokines’. However, since most are neither ‘cytokines’ nor ‘cytokine-like’, it is recommended that the term ‘adipokine’ be universally adopted to describe a protein that is secreted from (and synthesised by) adipocytes. It is suggested that the term is restricted to proteins secreted from adipocytes, excluding signals released only by the other cell types (such as macrophages) in adipose tissue. Theadipokinome(which together with lipid moieties released, such as fatty acids and prostaglandins, constitute thesecretomeof fat cells) includes proteins involved in lipid metabolism, insulin sensitivity, the alternative complement system, vascular haemostasis, blood pressure regulation and angiogenesis, as well as the regulation of energy balance. In addition, there is a growing list of adipokines involved in inflammation (TNFα, IL-1β, IL-6, IL-8, IL-10, transforming growth factor-β, nerve growth factor) and the acute-phase response (plasminogen activator inhibitor-1, haptoglobin, serum amyloid A). Production of these proteins by adipose tissue is increased in obesity, and raised circulating levels of several acute-phase proteins and inflammatory cytokines has led to the view that the obese are characterised by a state of chronic low-grade inflammation, and that this links causally to insulin resistance and the metabolic syndrome. It is, however, unclear as to the extent to which adipose tissue contributes quantitatively to the elevated circulating levels of these factors in obesity and whether there is a generalised or local state of inflammation. The parsimonious view is that the increased production of inflammatory cytokines and acute-phase proteins by adipose tissue in obesity relates primarily to localised events within the expanding fat depots. It is suggested that these events reflect hypoxia in parts of the growing adipose tissue mass in advance of angiogenesis, and involve the key controller of the cellular response to hypoxia, the transcription factor hypoxia inducible factor-1.


2020 ◽  
Vol 28 (5) ◽  
pp. 496-501
Author(s):  
Georgia Karpathiou ◽  
Jean Marc Dumollard ◽  
Zoe Evangelou ◽  
Anna Batistatou ◽  
Michel Peoc’h ◽  
...  

White adipose tissue browning has emerged as a putative therapy of obesity, and studies in mice have shown that Cdkn2a is implicated in white-to-brown transition. However, the role of Cdkn2a product p16 has been never studied in human brown fat tissue. The aim of the study is to investigate the expression of p16 in normal brown fat and in hibernoma, a lipoma containing brown fat-like adipocytes. Ten normal brown fat tissues and 5 hibernomas were immunohistochemically studied for p16 expression. Nearby white adipose tissue was used for comparison. All brown fat and hibernomas specimens express p16 in a cytoplasmic manner. Neighboring white adipose tissue is negative for p16 expression. Thus, cytoplasmic p16 may be associated with fat tissue browning.


1988 ◽  
Vol 255 (6) ◽  
pp. R874-R881 ◽  
Author(s):  
I. R. Park ◽  
J. Himms-Hagen

We studied the role of the sympathetic innervation in development and maintenance of increased levels of uncoupling protein (UCP) and of thyroxine 5'-deiodinase (TD) during cold-induced growth of brown adipose tissue (BAT). Interscapular BAT was unilaterally (and in some experiments, bilaterally) denervated either before acclimation to cold (4 degrees C) for 12 days or after 14 days of a total 28-day period of acclimation to cold. BAT norepinephrine was reduced to 3-7% of the normal level in denervated BAT for up to 26 days. Denervation slowed, but did not prevent, cold-induced increases in total protein, in mitochondrial GDP binding, and in mitochondrial UCP concentration, which all reached 50% or more of the elevated level in intact tissue. In contrast, TD activity did not exceed 10% of the elevated level in intact tissue at any time. Denervation after cold acclimation resulted in a very rapid loss of TD activity, a slower and selective loss (after a lag of 1 day) of UCP, and a much slower loss of tissue protein. We conclude that the sympathetic innervation is required for an optimal trophic response of BAT to cold acclimation and for maintenance in the hypertrophied state but that other factors are also involved. Induction and maintenance of TD in BAT does need the sympathetic innervation.


Sign in / Sign up

Export Citation Format

Share Document