scholarly journals Effect of a compound starter cultures inoculation on bacterial profile and biogenic amine accumulation in Chinese Sichuan sausages

2022 ◽  
Vol 11 (2) ◽  
pp. 341-348
Author(s):  
Hongyang Ren ◽  
Yuanpeng Deng ◽  
Xinhui Wang
2014 ◽  
Vol 44 ◽  
pp. 271-277 ◽  
Author(s):  
E. Renes ◽  
I. Diezhandino ◽  
D. Fernández ◽  
R.E. Ferrazza ◽  
M.E. Tornadijo ◽  
...  

2015 ◽  
pp. 1-7 ◽  
Author(s):  
Chong Xie ◽  
Hu-Hu Wang ◽  
Xiao-Kai Nie ◽  
Lin Chen ◽  
Shao-Lin Deng ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
David Ranucci ◽  
Anna Rita Loschi ◽  
Dino Miraglia ◽  
Roberta Stocchi ◽  
Raffaella Branciari ◽  
...  

The aim of the study was to evaluate the biogenic amine (BA) content of <em>Ciauscolo</em> salami made with and without the use of a selected started culture. Two batches of salami were made following the guidelines of the Protected Geographical Indications: with and without adding a commercial starter culture made of <em>Lactobacillus plantarum</em> and <em>Staphylococcus xylosus</em>. Six samples of salami per batch were collected at different ripening times (0, 15, 30, 45 and 60 days) for physical, chemical and microbiological analyses and for the determination of BA content. No differences were recorded for physical, chemical and microbiological analyses except for <em>Staphylococcus</em> spp. count at the time of casing (T0) and Total Volatile Basic Nitrogen from 30 days (T2) to the end of the ripening time (60 days, T4). After 60 days of ripening, the use of selected starter culture significantly affected the amount of putrescine (195.15 <em>vs</em> 164.43 mg/100 g in salami without and with starters, respectively), cadaverine (96.95 <em>vs</em> 104.40 mg/100 g in salami without and with starters, respectively), histamine (81.94 vs 69.89 mg/100 g in salami without and with starters, respectively) and spermine (36.88 <em>vs</em> 33.57 mg/100 g in salami without and with starters, respectively). Despite significantly higher values of TVBN, the use of selected starter culture determined no significant effects on the BA content of the products.


2000 ◽  
Vol 63 (11) ◽  
pp. 1556-1562 ◽  
Author(s):  
SARA BOVER-CID ◽  
MARIA IZQUIERDO-PULIDO ◽  
M. CARMEN VIDAL-CAROU

Several combinations of an amine-negative Lactobacillus sakei strain, along with proteolytic Staphylococcus carnosus or Staphylococcus xylosus strains, were used to study the influence of mixed starter cultures on biogenic amine production during the manufacture of dry fermented sausages. Changes in pH, water content, proteolysis, microbial counts, and biogenic amine contents were simultaneously examined in a spontaneously fermented batch and in three mixed starter-mediated batches. A double-controlled microbial charge initially inoculated as mixed starter culture of L. sakei and Staphylococcus spp. (all amine-negative strains) drastically reduced tyramine, cadaverine, and putrescine accumulation. No production of other aromatic amines such as histamine, phenylethylamine, or tryptamine was observed in any batch. The polyamines, spermine and spermidine, were found in raw materials and their levels decreased slightly in the spontaneously fermented batch. No correlation between proteolysis and biogenic amine production was observed. The use of proper technological conditions favoring starter development and the use of the raw materials with good hygienic quality make it possible to produce fermented sausages nearly free of biogenic amines.


2005 ◽  
Vol 68 (11) ◽  
pp. 2341-2348 ◽  
Author(s):  
MARGARITA GARRIGA ◽  
BEGONYA MARCOS ◽  
BELÉN MARTÍN ◽  
M. TERESA VECIANA-NOGUÉS ◽  
SARA BOVER-CID ◽  
...  

The effectiveness of selected starter cultures and high hydrostatic pressure after ripening was evaluated to improve the safety and quality of slightly fermented sausages. Inhibition of common foodborne pathogens, spoilage bacteria, and biogenic amine content was studied. Random amplification of polymorphic DNA and plasmid profiles were used to monitor the competitiveness of the starter cultures during fermentation and ripening. Lactobacillus sakei CTC6626 and Staphylococcus xylosus CTC6013 dominated L. sakei CTC6469 and S. xylosus CTC6169 independently of the product assayed. Starter cultures were able to control the growth of Listeria monocytogenes, Enterobacteriaceae, Enterococcus, and the biogenic amine content. A pH decrease below 5.3 at the seventh day of fermentation was crucial. Salmonella spp. counts decreased significantly during ripening independently of the use of starter culture and product. High hydrostatic pressure treatment was necessary to ensure absence of Salmonella spp. in final products.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Federica Barbieri ◽  
Chiara Montanari ◽  
Fausto Gardini ◽  
Giulia Tabanelli

Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.


LWT ◽  
2016 ◽  
Vol 71 ◽  
pp. 47-53 ◽  
Author(s):  
Rubén Domínguez ◽  
Paulo E. Munekata ◽  
Rubén Agregán ◽  
José M. Lorenzo

1997 ◽  
Vol 60 (11) ◽  
pp. 1371-1375 ◽  
Author(s):  
ANA I. ORDÓÑEZ ◽  
FRANCISCO C. IBÁÑEZ ◽  
PALOMA TORRE ◽  
YOLANDA BARCINA

The importance of biogenic amines stems from their toxicity and their potential as a cause of food poisoning. After fish, cheese has been the foodstuff most often responsible for cases of food poisoning caused by ingestion of biogenic amines. Changes in biogenic amine (histamine, tyramine, putrescine, cadaverine, tryptamine, isopentylamine, spermidine, and phenylethylamine) content during the ripening of a cheese made from raw ewe's milk were studied, together with the effects of pasteurization and a commonly used commercial starter and indigenous starter cultures. Biogenic amines were determined by high-pressure liquid chromatography following extraction from the cheese and derivatization with dansyl chloride. Levels of histamine, potentially the most toxic amine, in the semihard Idiazábal cheese were very low. Tyramine, putrescine, and cadaverine were the main amines present in this type of cheese. Levels of those amines increased during ripening. Pasteurization of the milk brought about a reduction in the biogenic amine content of the ripened cheese, irrespective of the starter culture employed. The indigenous starter cultures considered in this study produced higher levels of histamine and cadaverine and lower levels of tyramine and putrescine than the commercial starter culture tested.


Sign in / Sign up

Export Citation Format

Share Document