Kinetic study of the transesterification reaction by artificial neural networks and parametric particle swarm optimization

Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117221 ◽  
Author(s):  
Diego Galvan ◽  
Hágata Cremasco ◽  
Ana Carolina Gomes Mantovani ◽  
Evandro Bona ◽  
Mário Killner ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Hacibeyoglu ◽  
Mohammed H. Ibrahim

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novel multimean particle swarm optimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feed-forward artificial neural networks training.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 493-508 ◽  
Author(s):  
Alper Kerem ◽  
Ali Saygin

This paper presents a new hybrid metaheuristic model in order to estimate wind speeds accurately. The study was started by the training process of artificial neural networks with some metaheuristic algorithms such as evolutionary strategy, genetic algorithm, ant colony optimization, probability-based incremental learning, particle swarm optimization, and radial movement optimization in the literature. The success of each model is recorded in graphs. In order to make the closest estimation and to increase the system stability, a new hybrid metaheuristic model was developed using particle swarm optimization and radial movement optimization, and the training process of artificial neural networks was performed with this new model. The data were obtained by real-time measurements from a 63-m-high wind measurement station built at the coordinates of UTM E 263254 and N 4173479, altitude 1313 m. Two different scenarios were created using actual data and applied to all models. It was observed that the error values in the designed new hybrid metaheuristic model were lower than those of the other models.


Sign in / Sign up

Export Citation Format

Share Document