Reactive molecular dynamics of pyrolysis and combustion of alternative jet fuels: A ReaxFF study

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122157
Author(s):  
Rene F.B. Goncalves ◽  
Bruno K.V. Iha ◽  
José A.F.F. Rocco ◽  
Aleksey E. Kuznetsov
RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 5507-5515
Author(s):  
Liang Song ◽  
Feng-Qi Zhao ◽  
Si-Yu Xu ◽  
Xue-Hai Ju

The bimolecular and fused ring compounds are found in the high-temperature pyrolysis of NONA using ReaxFF molecular dynamics simulations.


Author(s):  
Marcelo Lopes Pereira Junior ◽  
Wiliam Ferreira da Cunha ◽  
Douglas Soares Galvão ◽  
Luiz Antonio Ribeiro Junior

Recently, laser-assisted chemical vapor deposition has been used to synthesize a free-standing, continuous, and stable monolayer amorphous carbon (MAC).


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1243
Author(s):  
Fan Zhang ◽  
Yufei Cao ◽  
Xuan Liu ◽  
Huan Xu ◽  
Diannan Lu ◽  
...  

Understanding the aging mechanism of polypropylene (PP) is fundamental for the fabrication and application of PP-based materials. In this paper, we present our study in which we first used reactive molecular dynamics (RMD) simulations to explore the thermo-oxidative aging of PP in the presence of acetic acid or acetone. We studied the effects of temperature and oxygen on the aging process and discussed the formation pathways of typical small molecule products (H2, CO, CO2, CH4, C2H4, and C2H6). The effect of two infection agents, acetic acid and acetone, on the aging reaction was analyzed emphatically. The simulation results showed that acetone has a weak impact on accelerating the aging process, while acetic acid has a significant effect, consistent with previous experimental studies. By tracking the simulation trajectories, both acetic acid and acetone produced small active free radicals to further react with other fragment products, thus accelerating the aging process. The first reaction step of acetic acid is often the shedding of the H atom on the hydroxyl group, while the reaction of acetone is often the shedding of the H atom or the methyl. The latter requires higher energy at lower temperatures. This is why the acceleration effect of acetone for the thermo-oxidative aging of PP was not so significant compared to acetic acid in the experimental temperature (383.15 K).


Sign in / Sign up

Export Citation Format

Share Document