Studies on individual pyrolysis and co-pyrolysis of peat–biomass blends: Thermal decomposition behavior, possible synergism, product characteristic evaluations and kinetics

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122280
Author(s):  
Yuhuan Li ◽  
Hongyu Zhao ◽  
Xin Sui ◽  
Xuemei Wang ◽  
Hongbing Ji
2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-675-Pr3-682 ◽  
Author(s):  
Y. S. Min ◽  
Y. J. Cho ◽  
D. Kim ◽  
J. H. Lee ◽  
B. M. Kim ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yiping Shang ◽  
Wu Yang ◽  
Yabei Xu ◽  
Siru Pan ◽  
Huayu Wang ◽  
...  

In this study, few-layered tungsten disulfide (WS2) was prepared using a liquid phase exfoliation (LPE) method, and its thermal catalytic effects on an important kind of energetic salts, dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50), were investigated. Few-layered WS2 nanosheets were obtained successfully from LPE process. And the effects of the catalytic activity of the bulk and few-layered WS2 on the thermal decomposition behavior of TKX-50 were studied by using synchronous thermal analysis (STA). Moreover, the thermal analysis data was analyzed furtherly by using the thermokinetic software AKTS. The results showed the WS2 materials had an intrinsic thermal catalysis performance for TKX-50 thermal decomposition. With the few-layered WS2 added, the initial decomposition temperature and activation energy (Ea) of TKX-50 had been decreased more efficiently. A possible thermal catalysis decomposition mechanism was proposed based on WS2. Two dimensional-layered semiconductor WS2 materials under thermal excitation can promote the primary decomposition of TKX-50 by enhancing the H-transfer progress.


2006 ◽  
Vol 31 (1) ◽  
pp. 45-52 ◽  
Author(s):  
H. Al-Maydama ◽  
A. El-Shekeil ◽  
M. A. Khalid ◽  
A. Al-Karbouly

The thermal decomposition behavior of the Fe(II), Co(II), Ni(II) and Zn(II) complexes of polydithiooxamide has been investigated by thermogravimetric analysis (TGA) at a heating rate of 20°C min-1 under nitrogen. The Coats-Redfern integral method is used to evaluate the kinetic parameters for the successive steps in the decomposition sequence observed in the TGA curves. The processes of thermal decomposition taking place in the four complexes are studied comparatively as the TGA curves indicate the difference in the thermal decomposition behavior of these complexes. The thermal stabilities of these complexes are discussed in terms of repulsion among electron pairs in the valence shell of the central ion and electronegativity effects.


2018 ◽  
Vol 2 (5) ◽  
pp. 7-12
Author(s):  

The bamboo industry in Japan is declined, and disordered bamboo forests are increasing. Although maintenance of bamboo forest is needed, a large amount of bamboo wastes after logging is generated and left untreated. Therefore, new utilization of bamboo wastes after logging are desired. In this research, we aimed to develop a new recycling technology for bamboo using alkali hydroxide. By pyrolyzing bamboo using hydroxide under an inert atmosphere, thermal decomposition of organic contents and alkali fusion of silica component inside the bamboo were carried out simultaneously to recover combustible gas, charcoal and silica component. The thermal decomposition behavior of bamboo, the properties of the obtained charcoal and extraction of silica in the presence of alkali hydroxide were investigated, and the optimum condition of bamboo recycling treatment was examined. As a result, it was found that when 1 g of bamboo was pyrolyzed at higher than 500 °C with 3 g NaOH ,the almost silica was extracted, a large amount of gas generated, and a carbonized material with specific surface area of about more than 1100 m2 /g was obtained.


2006 ◽  
Vol 55 (6) ◽  
pp. 245-251
Author(s):  
Kazutoshi Fujiwara ◽  
Hirotaka Kawamura ◽  
Hideo Hirano ◽  
Kanjo Takahashi ◽  
Toshihiko Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document