Highly dispersed active sites of Ni nanoparticles onto hierarchical reduced graphene oxide architecture towards efficient water oxidation

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122926
Author(s):  
Zeenat ◽  
Syeda Maryum Javed ◽  
Zahoor Ahmad ◽  
Saeed Ahmed ◽  
Shahid Iqbal ◽  
...  
Langmuir ◽  
2021 ◽  
Vol 37 (5) ◽  
pp. 1925-1931
Author(s):  
Samaneh Shahsavarifar ◽  
Majid Masteri-Farahani ◽  
Mohammad Reza Ganjali

Author(s):  
Hang Lei ◽  
Shangjing Yang ◽  
Runquan Lei ◽  
Qing Zhong ◽  
Qixiang Wan ◽  
...  

Insufficient catalytic activity and self-restacking of 2D MXenes during catalytic processes would lead to limited number of active sites, sluggish ionic kinetics and poor durability, extremely restricting its application in...


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12487-12496 ◽  
Author(s):  
Haichao Duan ◽  
Yu Yang ◽  
Jianhua Lü ◽  
Changli Lü

We report a facile, mussel-inspired construction of a thermo-responsive diblock copolymer-anchored rGO support for superfine PdNPs with high catalytic activity.


NANO ◽  
2020 ◽  
Vol 15 (02) ◽  
pp. 2050021
Author(s):  
Qi Tang ◽  
Menghan Ye ◽  
Li Ma ◽  
Tao Zhou ◽  
Mengyu Gan ◽  
...  

In this work, the Ni–Mn layered double hydroxide (Ni–Mn LDH) nanopetals are fabricated on three-dimensional reduced graphene oxide/Ni foam (RGO/NF) by one-step hydrothermal method, in which the suspension of graphene oxide (GO) is directly reduced by nickel foam (NF) to obtain NF/RGO. The composite, which consists of interconnected Ni–Mn LDH nanopetals, forms a macroporous structure. Such an open space can promote electrolyte dispersion and ion diffusion of active substances, thus enhancing capacitance performance. Remarkable, during crystal growth, RGO can not only provide active sites for Ni–Mn LDH nanopetals, but also effectively connect Ni–Mn LDH nanopetals to NF, further promoting the electrochemical behavior of composite material. Moreover, RGO possess reasonable chemical stability which can improve the mechanical properties of the composite to obtain good stability. The experimental results show that the NF/RGO electrode material with Ni–Mn LDH nanopetals has excellent specific capacitance of 2250[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text], good rate performance (the capacitance retention rate is still 64.0% at 10[Formula: see text]A[Formula: see text]g[Formula: see text] and excellent cycle life (45.1% at 10[Formula: see text]A[Formula: see text]g[Formula: see text] after 5000 cycles). NR/NM–LDH is used as the positive electrode and activated carbon is used as the negative electrode to assemble the asymmetric supercapacitor, the proper power density and energy density indicates that the NR/NM–LDH composite has great potential as an electrode material for supercapacitors.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 948
Author(s):  
Chen Zhao ◽  
Zhi Yu ◽  
Jun Xing ◽  
Yuting Zou ◽  
Huiwen Liu ◽  
...  

The development of efficient electrocatalyst to produce molecular hydrogen from water is receiving considerable attention, in an effort to decrease our reliance on fossil fuels. The prevention of the aggregation of active sites during material synthesis, in order to increase charge transport properties of electrocatalysts, is needed. We have designed, synthesized, and studied a Ag2S/reduced graphene oxide (rGO) electrochemical catalyst (for hydrogen evolution) from water. The Ag2S nanocrystals were synthesized by the solvothermal method in which the rGO was added. The addition of the rGO resulted in the formation of smaller Ag2S nanocrystals, which consequently increased the electrical conductivity of the composite catalyst. The composite catalyst showed a higher electrochemical catalytic activity than the one with an absence of rGO. At a current density of 10 mA/cm2, a low overpotential of 120 mV was obtained. A Tafel slope of 49.1 mV/dec suggests a Volmer–Herovsky mechanism for the composite catalyst. These results may provide a novel strategy for developing hydrogen evolution reaction (HER) electrocatalysts, via the combining of a nano-semiconductor catalyst with a 2D material.


2019 ◽  
Vol 7 (19) ◽  
pp. 15948-15956 ◽  
Author(s):  
Juan C. Espinosa ◽  
Mercedes Álvaro ◽  
Amarajothi Dhakshinamoorthy ◽  
Sergio Navalón ◽  
Hermenegildo García

Sign in / Sign up

Export Citation Format

Share Document