Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122934
Author(s):  
Abhinay Thakur ◽  
Ashish Kumar ◽  
Savas Kaya ◽  
Dai-Viet N. Vo ◽  
Ajit Sharma
2012 ◽  
Vol 79 (3) ◽  
pp. 931-941 ◽  
Author(s):  
Byoungjin Kim ◽  
Jing Du ◽  
Dawn T. Eriksen ◽  
Huimin Zhao

ABSTRACTBalancing the flux of a heterologous metabolic pathway by tuning the expression and properties of the pathway enzymes is difficult, but it is critical to realizing the full potential of microbial biotechnology. One prominent example is the metabolic engineering of aSaccharomyces cerevisiaestrain harboring a heterologous xylose-utilizing pathway for cellulosic-biofuel production, which remains a challenge even after decades of research. Here, we developed a combinatorial pathway-engineering approach to rapidly create a highly efficient xylose-utilizing pathway for ethanol production by exploring various combinations of enzyme homologues with different properties. A library of more than 8,000 xylose utilization pathways was generated using DNA assembler, followed by multitiered screening, which led to the identification of a number of strain-specific combinations of the enzymes for efficient conversion of xylose to ethanol. The balancing of metabolic flux through the xylose utilization pathway was demonstrated by a complete reversal of the major product from xylitol to ethanol with a similar yield and total by-product formation as low as 0.06 g/g xylose without compromising cell growth. The results also suggested that an optimal enzyme combination depends on not only the genotype/phenotype of the host strain, but also the sugar composition of the fermentation medium. This combinatorial approach should be applicable to any heterologous pathway and will be instrumental in the optimization of industrial production of value-added products.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mobolaji Felicia Adegboye ◽  
Omena Bernard Ojuederie ◽  
Paola M. Talia ◽  
Olubukola Oluranti Babalola

AbstractThe issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.


Fuels ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 71-86
Author(s):  
Johann Orlygsson ◽  
Sean Michael Scully

The present investigation is on bioethanol and biohydrogen production from oxalate-rich rhubarb leaves which are an underutilized residue of rhubarb cultivation. Rhubarb leaves can be the feedstock for bioethanol and biohydrogen production using thermophilic, anaerobic bacteria. The fermentation of second-generation biomass to biofuels by Thermoanaerobacter has already been reported as well as their high ethanol and hydrogen yields although rhubarb biomass has not been examined for this purpose. Thermoanaerobacter thermohydrosulfuricus strain AK91 was characterized (temperature and pH optima, substrate utilization spectrum) which demonstrates that the strain can utilize most carbohydrates found in lignocellulosic biomass. Additionally, the influence of specific culture conditions, namely the partial pressure of hydrogen and initial glucose concentration, were investigated in batch culture and reveals that the strain is inhibited. Additionally, batch experiments containing common inhibitory compounds, namely carboxylic acids and aldehydes, some of which are present in high concentrations in rhubarb. Strain AK91 is not affected by alkanoic carboxylic acids and oxalate up to at least 100 mM although the strain was inhibited by 40 mM of malate. Interestingly, strain AK91 demonstrated the ability to reduce alkanoic carboxylic acids to their primary alcohols; more detailed studies with propionate as a model compound demonstrated that AK91’s growth is not severally impacted by high propionate loadings although 1-propanol titers did not exceed 8.5 mM. Additionally, ethanol and hydrogen production from grass and rhubarb leaf hydrolysates was investigated in batch culture for which AK91 produced 7.0 and 6.3 mM g−1, respectively.


2013 ◽  
Vol 80 (2) ◽  
pp. 540-554 ◽  
Author(s):  
Trey K. Sato ◽  
Tongjun Liu ◽  
Lucas S. Parreiras ◽  
Daniel L. Williams ◽  
Dana J. Wohlbach ◽  
...  

ABSTRACTThe fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeastSaccharomyces cerevisiaeis known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverseS. cerevisiaestrains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, andp-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts ofpCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose andpCA or FA with a wildS. cerevisiaestrain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.


2020 ◽  
Vol 56 (27) ◽  
pp. 3851-3854 ◽  
Author(s):  
Xiaomin Chai ◽  
Hai-Hua Huang ◽  
Huiping Liu ◽  
Zhuofeng Ke ◽  
Wen-Wen Yong ◽  
...  

A Co-based complex displayed the highest photocatalytic performance for CO2 to CO conversion in aqueous media.


Nanoscale ◽  
2020 ◽  
Vol 12 (30) ◽  
pp. 16136-16142
Author(s):  
Xuan Wang ◽  
Ming-Jie Dong ◽  
Chuan-De Wu

An effective strategy to incorporate accessible metalloporphyrin photoactive sites into 2D COFs by establishing a 3D local connection for highly efficient photocatalysis was developed.


Sign in / Sign up

Export Citation Format

Share Document