Evidence that wax deposition is a phase transition rather than a molecular diffusion phenomenon

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122940
Author(s):  
Charlie van der Geest ◽  
Letícia Bizarre ◽  
Aline Melchuna ◽  
Ivanei F. Pinheiro ◽  
Vanessa C.B. Guersoni
Author(s):  
L. R. Minchola ◽  
L. F. A. Azevedo ◽  
A. O. Nieckele

Wax deposition is a critical operational problem in crude oil transportation through pipelines in cold environments. Accurate prediction of the wax deposition is crucial for the efficient design of subsea lines. Wax deposition is a complex process for which the basic mechanisms are still not fully understood. Although Fick’s molecular diffusion model is considered by several authors as the leading deposition mechanism, it is shown that it does not represent well the wax deposition thickness, measured during the transient regime, in a simple experiment, in a rectangular channel, with a laboratory oil-wax mixture. Another important wax deposition mechanism identified is associated with the rheological properties of the fluid, since oil-paraffin mixtures shows a non-Newtonian behavior at temperatures below the fluid Wax Appearance Temperature. The mixture can be modeled as a Bingham fluid, with a dependence of the yield stress on wax concentration, temperature and rate of cooling. The present paper presents a numerical model for predicting wax deposition in channel flows considering the influence of rheological properties combined with a diffusion-based deposition mechanism. To determine the amount of deposit, the conservation equations of mass, momentum, energy and wax concentration in the mixture were numerically solved with the finite volume method. A nonorthogonal moving coordinate system that adapts to the wax interface deposit geometry was employed. The results demonstrated that additional deposition is obtained as a result of the non Newtonian behavior of the fluid. This trend is in agreement with experimental observation conducted in previous studies.


Author(s):  
Thevaruban Ragunathan ◽  
Colin D. Wood ◽  
Hazlina Husin

AbstractOne of the major concerns during the production of crude oil especially in tropical waters is the deposition of wax on to the walls of the pipeline. This is due to the low seabed temperatures which can be below the wax appearance temperature (WAT) which leads to wax depositing out through molecular diffusion. Currently, there are many methods to prevent and remedy wax deposition but most of these solutions pose a serious environmental threat and are expensive to produce. Hence, this research investigated the use of an organic and cheaper alternative by utilizing synthetic fatty acid esters such as oleic acid which has shown promising results in reducing the pour point of waxy crude oils. The solution that was used was of palm oil origin, crude palm oil (CPO) and crude palm kernel oil (CPKO) and was subsequently compared with the pour point depressant and wax inhibition efficiency of the current industry used inhibitors utilizing the SETA Pour Point and Cloud Point as well as the cold finger apparatus. It was observed that the palm oil inhibitors were highly effective at 1 wt.% due to the high composition of oleic acid present portraying a similar result to Triethanolamine (TEA) while Ethylene Vinyl Acetate (EVA) performed best at low concentration of 0.1 wt.% but deteriorates significantly as the concentration increases due to the polar end agglomerating among itself.


2018 ◽  
Vol 32 (3) ◽  
pp. 3406-3419 ◽  
Author(s):  
Charlie Van Der Geest ◽  
Vanessa C. Bizotto Guersoni ◽  
Daniel Merino-Garcia ◽  
Antonio Carlos Bannwart

1990 ◽  
Vol 31 (1) ◽  
pp. 56-63 ◽  
Author(s):  
A. M. Panich ◽  
I. A. Belitskii ◽  
N. K. Moroz ◽  
S. P. Gabuda ◽  
V. A. Drebushchak ◽  
...  

Author(s):  
Dongxu Sun ◽  
Zuoliang Zhu ◽  
Zhiyong Hu ◽  
Ming Wu

An experimental loop apparatus of heat insulated waxy crude oil pipeline was established to study the wax deposition behaviors. The effects of flow rate and ambient temperature on the thickness and wax content of deposition layer were investigated. A kinetic calculation model for the thickness and wax content of deposition layer in heat insulated crude oil pipeline was established based on the principle of molecular diffusion, aging and shear energy. The results calculated by the model are in good agreement with the experimental values. The wax deposition thickness of a heat insulated crude oil pipeline in different seasons and operation time in Northeast China was predicted according to the theoretical model, which was anticipated that can provide a scientific basis for formulating the wax removal cycle of the pipeline. The predicted results showed that the thickness of the wax deposition layer increases first and then decreases along the pipeline.


Author(s):  
Jimiao Duan ◽  
Jiang Li ◽  
Huishu Liu ◽  
Kecheng Gu ◽  
Jinfa Guan ◽  
...  

A model of wax deposition based on molecular diffusion mechanism, for oil-gas two-phase stratified pipe flow is developed. In the model, unidirectional fully developed flow analyses of momentum, heat and mass transfer are presented. And, a cube cage model is used to describe the wax deposit structure considering the effect of oil flow shear on the deposit. Calculation of wax deposit is compared well with a flow loop experiment. In particular, the model could give the wax deposit forming a crescent shape at the cross section of pipe, which is observed in different experiments. Furthermore, the cause of forming a crescent shape is revealed, which is indicated by the non-uniform circumferential distribution of mass flux for wax deposition along the pipe wall wetted by the oil. The mass flux from oil bulk flow to the oil-deposit interface is closely related to three parameters, diffusivity at oil-deposit interface, the temperature gradient at the oil-deposit interface at different time, and the slope of the wax solubility curve at oil-deposit interface temperature.


2001 ◽  
Vol 123 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Mandar S. Apte ◽  
Ahmadbazlee Matzain ◽  
Hong-Quan Zhang ◽  
Michael Volk ◽  
James P. Brill ◽  
...  

A Joint Industry Project to investigate paraffin deposition in multiphase flowlines and wellbores was initiated at The University of Tulsa in May 1995. As part of this JIP, a computer program, based on the molecular diffusion theory, was developed for prediction of wax deposition during multiphase flow in pipelines and wellbores. The program is modular in structure and assumes a steady-state, one-dimensional flow, energy conservation principle. This paper will describe the simulator developed for predicting paraffin deposition during multiphase flow that includes coupling of multiphase fluid flow, solid-liquid-vapor thermodynamics, multiphase heat transfer, and flow pattern-dependent paraffin deposition. Predictions of the simulator are compared and tuned to the experimental data by adjusting the film heat transfer and diffusion coefficients and the thermal conductivity of the wax deposit.


Author(s):  
Qing Miao ◽  
Jinghua Liang ◽  
Baoliang Jiang

When hot waxy crude oil is pumped into the cold pipeline, the oil temperature will decrease with time and along the pipeline. As soon as the oil temperature near the pipe wall is below the WAP (wax appearance point), the wax contained in the crude will precipitate from the crude and deposit on the inner pipe wall with liquid part entrapped in it. This phenomenon is called wax deposition of the crude oil pipeline. The formation of the wax deposition reduces the throughput of the pipeline but enhances the operation pressure of the pipeline, which brings about more consumption of the power and reduces the safety of the pipeline. More seriously, when the wax deposition layer in the pipeline grows enough thickly, the pipeline would face the danger of shutdown and the enormous loss of economy would occur. So the removal of the wax deposition layer periodically, that is, pigging is strongly needed. Periodic pigging could reduce the operation pressure of the pipeline and keep the throughput of the pipeline, which makes the pipeline avoid hidden trouble of shutdown. Although pigging could solve the problem of the wax deposition of crude oil pipeline successfully, another problem of how to determine the pigging frequency must be faced. Relative to a suitable pigging frequency (though it is difficult to determine), more often pigging could increase the operation cost and wear and tear the inner wall of the pipe but a prolonged interval of pigging may make trouble. Usual means of determining the pigging frequency of a pipeline is mainly based on the pressure drop calculation between two pump stations. From Darcy formula for calculating the pressure loss of the pipeline, the average equivalent inside diameter (say hydraulic inside diameter) of the pipeline could be obtained. Then the average wax deposition thickness in the means of hydraulics could be calculated being based on the original inside diameter of pipeline. According to the average wax deposition thickness and operation experiences, the pigging frequency could be determined. This is true if the wax deposition along the pipeline is almost identical. But in most cases, i.e. to most crude oils and pipelines, the wax deposition profile along the pipeline is not unchanged but a complex curve. In later cases, the average wax deposition thickness calculated from the pressure drop between two pump stations hydraulically exaggerates the average extent of wax deposition but ignores the severity of wax deposition at some local position of pipeline. Thus the pigging frequency determined from the pressure drop might result in more errors, that is, a more frequent pigging or one with more safety troubles. From all the above, a prediction of wax deposition in the pipeline is very necessary and important to the decision of a safe and economic pigging frequency. But due to the complexity of the problem of wax deposition, it is very difficult to predict the wax deposition of one crude oil in a pipeline theoretically. A semi-experience method based on molecular diffusion principle for predicting the wax deposition of Daqing crude oil in the Northeast Pipelines in China is developed and introduced in this paper. Using this method, the wax depositions in the Northeast Pipelines in different seasons are calculated numerically on computers. Based on the calculation results, a more rational pigging scheme aimed at the Northeast Pipelines, which considers the variation of wax deposition along the pipeline, are given.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Sign in / Sign up

Export Citation Format

Share Document