Comparative investigation of multi-walled carbon nanotube modified diesel fuel and biogas in dual fuel mode on combustion, performance, and emission characteristics

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123008
Author(s):  
M.R. Atelge ◽  
Esenay Arslan ◽  
David Krisa ◽  
R.R. Al-Samaraae ◽  
Serdar Abut ◽  
...  
2021 ◽  
Author(s):  
Mohammad Nouri ◽  
Amir Homayoon Meghdadi Isfahani ◽  
Alireza Shirneshan

Abstract This research investigates the effects of the addition of Fe2O3 and Al2O3 nanoparticles (30, 60, and 90 ppm) and Fe2O3-Al2O3 hybrid nanoparticles to pure diesel fuel on the combustion, performance and emission characteristics of a diesel engine. The results indicated that fuel blends improved the combustion (in-cylinder pressure and heat release rate), performance (power, fuel consumption, and thermal and exergy efficiency), and emission characteristics of the engine. The results showed that the peak combustion pressure increased by 4% and the heat release rate was improved by 15% in comparison with pure diesel with the addition of the nanoparticles. Moreover, the rate of pressure rise increased by 18% compared to pure diesel with nanoparticle additives. Based on the results, the effects of Fe2O3 fuel blends on brake power, BTE, and CO emission were more than Al2O3 fuel blends, such that it increased power and thermal efficiency by 7.40 and 14%, respectively, and reduced CO emissions by 21.2%; moreover, the blends with Al2O3 nanoparticle additives in comparison with Fe2O3 nanoparticle blends showed a better performance in reducing BSFC (9%), NOx (23.9%), and SO2 (23.4%) emissions. Overall, the Fe2O3-Al2O3 hybrid fuel blend is the best alternative if the performance and emission characteristics of the engine are both considered.


Author(s):  
Yongcheng Huang ◽  
Yaoting Li ◽  
Kun Luo ◽  
Jiyuan Wang

Although both biodiesel and n-butanol are excellent renewable biofuels, most of the existing research works merely use them as the additives for petroleum diesel. As the main fuel properties of biodiesel and n-butanol are complementary, the biodiesel/ n-butanol blends are promising to be a pure biomass-based substitute for diesel fuel. In this paper, the application of the biodiesel/ n-butanol blends on an agricultural diesel engine was comprehensively investigated, in terms of the combustion, performance, and emission characteristics. First, the biodiesel/ n-butanol blends with 10%, 20%, and 30% n-butanol by weight were prepared and noted as BBu10 (10 wt% n-butanol + 90 wt% biodiesel), BBu20 (20 wt% n-butanol + 80 wt% biodiesel), and BBu30 (30 wt% n-butanol + 70 wt% biodiesel). It was found that adding 30 wt% n-butanol to biodiesel can reduce the viscosity by 39.3% and increase the latent heat of vaporization by 57.3%. Then the engine test results showed that with the addition of n-butanol to biodiesel, the peak values of the cylinder pressure and temperature of the biodiesel/ n-butanol blends were slightly decreased, the peak values of the pressure rise rate and heat release rate of the blends were increased, the fuel ignition was delayed, and the combustion duration was shortened. BBu20 has the approximate ignition characteristics with diesel fuel. Both the brake thermal efficiency and the brake-specific fuel consumption of BBu30 were increased by the average percentages of 2.7% and 14.9%, while NO x, soot, and CO emissions of BBu30 were reduced by the average percentages of 17.6%, 34.1%, and 15.4%, compared to biodiesel. The above variations became more evident as the n-butanol proportion increased.


1970 ◽  
Vol 46 (2) ◽  
pp. 195-200 ◽  
Author(s):  
GA Rao ◽  
AVS Raju ◽  
CVM Rao ◽  
KG Rajulu

In the present work, LPG, a by-product of petroleum refining process is used to replace conventional diesel fuel, partially, for improved combustion efficiency and clean burning. A conventional diesel engine was operated on the dual-fuel mode, using LPG as the primary fuel and diesel as the pilot fuel. A four-stroke, single-cylinder diesel engine, most widely used in agricultural sector, has been considered for the purpose of experimentation. The engine was operated at a constant speed of 1500 rpm at a low engine load of 20% and a high engine load of 80%. Under both these operating conditions, combustion, performance and emission characteristics of the engine have been evaluated and compared with that of baseline diesel fuel operation. At 20 % engine load the brake thermal efficiency of the engine has found to decrease with an increase in the LPG content. On the other hand at 80% engine load, it has increased with an increase in the LPG content. Same trend has been observed with regard to the mechanical efficiency. The volumetric efficiency has decreased with an increase in the LPG content at both the loads. The engine operation is more economical on dual-fuel operation at 80% engine load, whereas at 20% engine load, diesel fuel operation is found to be better. With regard to emissions, smoke density and emissions of NOx were found to reduce with an increase in LPG content at both the loads; however, emissions of HC and CO have shown the reverse trend. Key words: Dual-Fuel; LPG; Diesel; Combustion; Performance; Emissions Load. DOI: http://dx.doi.org/10.3329/bjsir.v46i2.8186 Bangladesh J. Sci. Ind. Res. 46(2), 195-200, 2011


2010 ◽  
Vol 7 (1) ◽  
pp. 229-234 ◽  
Author(s):  
M. P. Sudeshkumar ◽  
G. Devaradjane

Rapid depletion of petroleum reserves and the environmental pollution caused by the growing use of conventional fuels created a challenge before the world that new type of fuels should replace the conventional fuels to achieve the future emission regulations. Hence great deal of research effort has been focused to find alternative fuel. The consideration of oxygenates with diesel fuel is a recent approach receives great attention in reducing the exhaust emissions of an engine The combustion, performance and emission characteristics of diesel fuel and oxygenated blends with diesel are analyzed in a four stroke naturally aspirated single cylinder direct injection compression ignition engine. The additives include 2-Ethoxyethanol (2EE), DiethyleneGlycol Dimethyl ether (DGM) and 2-Methoxyethanol (2ME) and the oxygenated compounds were selected based on the availability, price and oxygen content. These oxygenated compounds are blended with diesel fuel in proportion of 6% by volume. Combustion parameters such as in-cylinder pressure and Heat release rate were studied. The engine emission characteristics of the Compression ignition (CI) engine fuelling with oxygenated blends are studied experimentally. The performance of oxygenates on thermal efficiency and specific fuel consumption were studied. Comparing the combustion, performance and emission, the addition of 2-methoxy ethanol blend shows better performance than other two oxygenated blends with diesel and diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document