Investigation of flame structure and stabilisation characteristics of palm methyl esters diffusion flames

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123034
Author(s):  
Chia Chun Lee ◽  
Manh-Vu Tran ◽  
Dastan Nurmukan ◽  
Boon Thong Tan ◽  
Cheng Tung Chong ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


2020 ◽  
Vol 895 ◽  
Author(s):  
Mariovane S. Donini ◽  
Cesar F. Cristaldo ◽  
Fernando F. Fachini


2012 ◽  
Vol 2012.17 (0) ◽  
pp. 141-144
Author(s):  
Kazuya OKAZAKI ◽  
NORIHIRO Taide ◽  
Shinya ITOU ◽  
Jun HASHIMOTO ◽  
Kimitoshi TANOUE

2005 ◽  
Vol 30 (1) ◽  
pp. 1501-1508 ◽  
Author(s):  
Christopher R. Shaddix ◽  
Timothy C. Williams ◽  
Linda G. Blevins ◽  
Robert W. Schefer

2021 ◽  
Author(s):  
Armin Veshkini ◽  
Seth B. Dworkin

A numerical study is conducted of methane-air coflow diffusion flames at microgravity (μg) and normal gravity (lg), and comparisons are made with experimental data in the literature. The model employed uses a detailed gas phase chemical kinetic mechanism that includes PAH formation and growth, and is coupled to a sectional soot particle dynamics model. The model is able to accurately predict the trends observed experimentally with reduction of gravity without any tuning of the model for different flames. The microgravity sooting flames were found to have lower temperatures and higher volume fraction than their normal gravity counterparts. In the absence of gravity, the flame radii increase due to elimination of buoyance forces and reduction of flow velocity, which is consistent with experimental observations. Soot formation along the wings is seen to be surface growth dominated, while PAH condensation plays a more major role on centerline soot formation. Surface growth and PAH growth increase in microgravity primarily due to increases in the residence time inside the flame. The rate of increase of surface growth is more significant compared to PAH growth, which causes soot distribution to shift from the centerline of the flame to the wings in microgravity. Keywords: laminar diffusion flame,methane-air,microgravity, soot formation, numerical modelling


Sign in / Sign up

Export Citation Format

Share Document