Investigation on the ammonia emission characteristics in coal-fired power plants of China

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123046
Author(s):  
Chengqiang Zheng ◽  
Xiaolong Li ◽  
Junzhuang Li ◽  
Jiuxiang Duan ◽  
Hao Wu ◽  
...  
2014 ◽  
Vol 487 ◽  
pp. 54-57 ◽  
Author(s):  
Meng Yu Chai ◽  
Li Chan Li ◽  
Wen Jie Bai ◽  
Quan Duan

304 stainless steel and 316L stainless steel are conventional materials of primary pipeline in nuclear power plants. The present work is to summarize the acoustic emission (AE) characteristics in the process of pitting corrosion of 304 stainless steel, intergranular corrosion of 316L stainless steel and weldments of 316L stainless steel. The work also discussed the current shortcomings and problems of research. At last we proposed the coming possible research topics and directions.


2020 ◽  
Vol 379 ◽  
pp. 122257 ◽  
Author(s):  
Rongting Huang ◽  
Hao Wu ◽  
Linjun Yang

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1534 ◽  
Author(s):  
Seongmin Kang ◽  
Seong-Dong Kim ◽  
Eui-Chan Jeon

This study developed a NH3 emission factor for bituminous coal power plants in South Korea in order to investigate the NH3 emission characteristics. The NH3 concentration analysis results showed that emissions from the selected bituminous coal power plants were in the range of 0.21–0.99 ppm, and that the difference in NH3 concentration was affected by NOx concentration. The NH3 emission factor was found to be 0.0029 kg NH3/ton, which demonstrated that the difference in the values obtained from the research conducted in South Korea was lower than the difference in the emission factor provided by the U.S. EPA, which is currently applied in the statistics of South Korea. NH3 emissions were compared by using the NH3 emission factor developed in this study alongside the EPA’s NH3 emission factor that is currently applied in South Korea’s statistics; the difference was found to be 206 NH3 ton/year. This implies that an emission factor that reflects the national characteristics of South Korea needs to be developed. The uncertainty range of the NH3 emission factor developed in this study was between −6.9% and +10.34% at a 95% confidence level.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4249
Author(s):  
Xuan Yao ◽  
Man Zhang ◽  
Hao Kong ◽  
Junfu Lyu ◽  
Hairui Yang

After the implementation of the ultra-low emissions regulation on the coal-fired power plants in China, the problem of the excessive ammonia-slipping from selective catalytic reduction (SCR) seems to be more severe. This paper analyzes the operating statistics of the coal-fired plants including 300 MW/600 MW/1000-MW units. Statistics data show that the phenomenon of the excessive ammonia-slipping is widespread. The average excessive rate is over 110%, while in the small units the value is even higher. A field test data of nine power plants showed that excessive ammonia-slipping at the outlet of SCR decreased following the flue-gas process. After most ammonia reduced by the dust collector and the wet flue-gas desulfurization (FGD), the ammonia emission at the stack was extremely low. At same time, a method based on probability distribution is proposed in this paper to describe the relationship between the NH3/NOX distribution deviation and the De–NOX efficiency/ammonia-slipping. This paper also did some original work to solve the ammonia-slipping problem. A real-time self-feedback ammonia injection technology using neural network algorithm to predict and moderate the ammonia distribution is proposed to decrease the NH3/NOX deviation and excessive ammonia-slipping. The technology is demonstrated in a 600-MW unit and works successfully. The excessive ammonia-slipping problem is well controlled after the implementation of the technology.


Author(s):  
Xue Wang ◽  
Ping Chen ◽  
Xinquan Jiang ◽  
Qibin Wu ◽  
Yin Liu ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1088
Author(s):  
Gwanggon Jo ◽  
Taehwan Ha ◽  
Yu Jang ◽  
Okhwa Hwang ◽  
Siyoung Seo ◽  
...  

In this study, we aimed to determine the ammonia emission characteristics through analysis of ammonia concentration, ventilation rate, temperature, and relative humidity pattern in a mechanically ventilated swine finishing facility in Korea. Three pig rooms with similar environmental conditions were selected for repeated experimentation (Rooms A–C). Ammonia concentrations were measured using a photoacoustic gas monitor, and ventilation volume was estimated by applying the least error statistical model to supplement the missing data after measurement at several operation rates using a wind tunnel-based method. The mean ammonia concentrations were 4.19 ppm, and the ventilation rates were 24.9 m3 h−1 pig−1. Ammonia emissions were calculated within the range of 0.40–5.01, 0.25–4.16, and 0.37–5.68 g d−1 pig−1 for Room A, Room B, and Room C, respectively. Ammonia concentration and ventilation rate showed a weak negative correlation (r = −0.13). Ammonia emissions were more markedly affected by ammonia concentration (r = 0.88) than ventilation rate (r = 0.31). This indicates that ammonia concentration reduction can be effective in reducing ammonia emissions. The mean daily ammonia emissions, which increased exponentially over the finishing periods, were calculated as 1.78, 1.57, and 1.70 g d−1 pig−1 for Room A, Room B, and Room C, respectively (average 1.68 g d−1 pig−1).


2018 ◽  
Vol 18 (1) ◽  
pp. 117-126
Author(s):  
Buju Gong ◽  
◽  
Jeongmin Park ◽  
Jeonghun Kim ◽  
Jonghyeon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document