A motion analysis based technique for measuring frontal plane lower-limb alignment in patients with fixed knee flexion contractures

2014 ◽  
Vol 39 ◽  
pp. S73
Author(s):  
Adam Rozumalski ◽  
Tom F. Novacheck ◽  
Michael H. Schwartz
Author(s):  
Rodrigo Rabello ◽  
Camila Nodari ◽  
Felipe Scudiero ◽  
Iury Borges ◽  
Luan Fitarelli ◽  
...  

Abstract Purpose Fatigue-induced hip-abductor weakness may exacerbate lower-limb misalignments during different dynamic single-leg tasks. We sought to evaluate the effects of fatigue and task on lower limb kinematics and muscle activation and to find associations between measurements obtained in two tasks. Methods One-group pretest–posttest design. Seventeen healthy adults (9 W) performed the single-leg squat (SLSQUAT) and the single-leg hop (SLHOP) before and after a hip-abduction fatigue protocol. Hip adduction, knee frontal plane projection angle (knee FPPA) and heel inversion displacement were measured during the eccentric phase of the SLSQUAT and the SLHOP, as well as activation of the gluteus medius (GMed), tensor fascia latae (TFL), peroneus longus (PER) and tibialis anterior (TA). Moments and tasks were compared using a repeated-measures two-way ANOVA. Correlation between tasks was evaluated using Spearman’s correlation. Results No differences in kinematics or activation were found between moments. Hip-adduction displacement (P = 0.005), GMed (P = 0.008) and PER (P = 0.037) activation were higher during SLSQUAT, while TA activation was higher during SLHOP (P < 0.001). No differences were found between tasks in knee FPPA and heel inversion. Hip-adduction and knee FPPA were not correlated between tasks, while ankle inversion displacement was positively correlated (rs = 0.524–0.746). Conclusion Different characteristics of SLSQUAT (slower and deeper) seem to have led to increased hip adduction displacement, GMed, and PER activation and decreased TA activation, likely due to higher balance requirements. However, hip-abductor fatigue didn’t influence lower-limb alignment during the tasks. Finally, evaluations should be performed with different single-leg tasks since they don’t give the same lower-limb alignment information.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoshu Sun ◽  
Bin Yang ◽  
Shengzhao Xiao ◽  
Yichen Yan ◽  
Zifan Liu ◽  
...  

Abstract Purpose Long-leg-radiography (LLR) is commonly used for the measurement of lower limb alignment. However, limb rotations during radiography may interfere with the alignment measurement. This study examines the effect of limb rotation on the accuracy of measurements based on the mechanical and anatomical axes of the femur and tibia, with variations in knee flexion and coronal deformity. Methods Forty-five lower limbs of 30 patients were scanned with CT. Virtual LLRs simulating five rotational positions (neutral, ± 10$$^{\circ }$$ ∘ , and ± 20$$^{\circ }$$ ∘ internal rotation) were generated from the CT images. Changes in the hip–knee–ankle angle (HKA) and the femorotibial angle (FTA) were measured on each image with respect to neutral values. These changes were related to knee flexion and coronal deformity under both weight- and non-weight-bearing conditions. Results The measurement errors of the HKA and FTA derived from limb rotation were up to 4.84 ± 0.66$$^{\circ }$$ ∘ and 7.35 ± 0.88$$^{\circ }$$ ∘ , respectively, and were correlated with knee flexion (p < 0.001) and severe coronal deformity (p < 0.001). Compared with the non-weight-bearing position, the coronal deformity measured in the weight-bearing condition was 2.62$$^{\circ }$$ ∘ greater, the correlation coefficients between the coronal deformity and the deviation ranges of HKA and FTA were also greater. Conclusions Flexion and severe coronal deformity have a significant influence on the measurement error of lower limb alignment. Errors can be amplified in the weight-bearing condition compared with the non-weight-bearing condition. When using HKA and FTA to represent the mechanical axis and the anatomical axis on LLR, limb rotation impacts the anatomic axis more than the mechanical axis in patients with severe deformities. Considering LLR as the gold standard image modality, attention should be paid to the measurement of knee alignment. Especially for the possible errors derived from weight-bearing long-leg radiographs of patients with severe knee deformities.


2021 ◽  
Author(s):  
Xiaoshu Sun ◽  
Bin Yang ◽  
Shengzhao Xiao ◽  
Yichen Yan ◽  
Zifan Liu ◽  
...  

Abstract PurposeLong-leg-radiography (LLR) is commonly used for measurement of lower limb alignment. However, limb rotations during radiography may interfere with the alignment measurement. This study examines the effect of limb rotation on the accuracy of measurements based on the mechanical and anatomical axes of the femur and tibia, with variations in knee flexion and coronal deformity. MethodsForty-five lower limbs of thirty patients were scanned with CT. Virtual LLRs simulating 5 rotational positions (neutral, ±10°, and ±20° internal rotation) were generated from the CT images. Changes in the hip-knee-ankle angle (HKA) and the femorotibial angle (FTA) were measured on each image with respect to neutral values. These changes were related to knee flexion and coronal deformity under both weight- and non-weight-bearing conditions. ResultsThe measurement error of the HKA and FTA derived from limb rotation were up to 4.84±0.66° and 7.35±0.88° respectively, and were correlated with knee flexion (p<0.001) and severe coronal deformity (p≤0.001). Compared with non-weight-bearing position, coronal deformity measured in weight-bearing condition was 2.62° greater, the correlation coefficients between the coronal deformity and the deviation ranges of HKA and FTA were also greater. ConclusionFlexion and severe coronal deformity have significant influence on the measurement error of lower limb alignment. Errors can be amplified in the weight-bearing condition compared with the non-weight-bearing condition. The error of measurement of the anatomic axis is greater than the mechanical axis. Considering LLR is the gold standard image modality, attention should be paid to the measurement of knee alignment. Especially for the possible errors derives from weight-bearing long leg radiographs of patients with severe knee deformities.


2021 ◽  
Author(s):  
Jiugen Zhong ◽  
Wenhao Wang ◽  
Ligen Yu ◽  
Xiaohui Hou

Abstract Background: Chronic neck pain (CNP) is common, but methods that focus on the cervical spine have not met the patients' medical expectations.Objective: To investigate the global postural difference between students with CNP and healthy people.Design: Cross-sectional study.Methods: Twenty-seven healthy college students without neck pain and 31 students with CNP were recruited and allocated into a control group and a CNP group. Differences in standing postural indicators between the two groups were compared.Results: Compared to the control group, the leg length discrepancy and the right rearfoot angle were larger and the anterior lower limb alignment angle was smaller. In the sagittal plane, the left sagittal lower limb alignment and right cervical alignment angles were larger, while the left and right sagittal body alignment angles in the CNP group were smaller. The odds ratio calculation for the trunk forward lean, right foot valgus, and knee flexion on both sides indicated that these are risk factors for CNP, while knee varus is not a risk factor for CNP. The remaining abnormal postures were shown not to be associated with CNP.Limitation: This study did not conduct in-depth research on the physiological state of the muscles, joints, and other structures, and we did not apply these theories to practice.Conclusions: Abnormal posture in students with CNP is mainly concentrated in the sagittal plane. Trunk forward lean, foot valgus, and knee flexion on both sides are risk factors for CNP.


2008 ◽  
Vol 27 (4) ◽  
pp. 635-640 ◽  
Author(s):  
Michael A. Hunt ◽  
Trevor B. Birmingham ◽  
Thomas R. Jenkyn ◽  
J. Robert Giffin ◽  
Ian C. Jones

Sign in / Sign up

Export Citation Format

Share Document