The impact of clay dispersion and migration on soil hydraulic conductivity and pore networks

Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115297
Author(s):  
Awedat Musbah Awedat ◽  
Yingcan Zhu ◽  
John McLean Bennett ◽  
Steven R. Raine
2017 ◽  
Author(s):  
Vincenzo Alagna ◽  
Vincenzo Bagarello ◽  
Simone Di Prima ◽  
Fabio Guaitoli ◽  
Massimo Iovino ◽  
...  

Abstract. In bare soils of semi-arid areas, surface crusting is a rather common phenomenon due to the impact of raindrops. Water infiltration measurements under ponding conditions constitute a common way for an approximate characterization of crusted soils. In this study, the impact of crusting on soil hydraulic conductivity was assessed in a Mediterranean vineyard (western Sicily, Italy) under conventional tillage. The BEST (Beerkan Estimation of Soil Transfer parameters) algorithm was applied to the infiltration data to obtain the hydraulic conductivity of crusted and uncrusted soils. Soil hydraulic conductivity was found to vary during the year and also spatially (i.e., rows vs. inter-rows) due to crusting, tillage and vegetation cover. A 55 mm rainfall event resulted in a decrease of the saturated soil hydraulic conductivity, Ks, by a factor close to two in the inter-row areas, due to the formation of a crusted layer at the surface. The same rainfall event did not determine a Ks reduction in the row areas (i.e., Ks reduced by a non-significant factor of 1.05) because the vegetation cover intercepted the raindrops and therefore prevented alteration of the soil surface. The developed ring insertion methodology on crusted soil, implying pre-moistening through the periphery of the sampled surface, together with the very small insertion depth of the ring (0.01 m) prevented visible fractures. Consequently, beerkan tests carried out along and between the vine-rows and data analysis by the BEST algorithm allowed to assess crusting-dependent reductions in hydraulic conductivity with extemporaneous measurements alone. Testing the beerkan infiltration run in other crusted soils and establishing comparisons with other experimental methodologies appear advisable to increase confidence on the reliability of the method, that seems suitable to allow simple characterization of crusted soils.


2019 ◽  
Vol 67 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Vincenzo Alagna ◽  
Vincenzo Bagarello ◽  
Simone Di Prima ◽  
Fabio Guaitoli ◽  
Massimo Iovino ◽  
...  

AbstractIn bare soils of semi-arid areas, surface crusting is a rather common phenomenon due to the impact of raindrops. Water infiltration measurements under ponding conditions are becoming largely applied techniques for an approximate characterization of crusted soils. In this study, the impact of crusting on soil hydraulic conductivity was assessed in a Mediterranean vineyard (western Sicily, Italy) under conventional tillage. The BEST (Beerkan Estimation of Soil Transfer parameters) algorithm was applied to the infiltration data to obtain the hydraulic conductivity of crusted and uncrusted soils. Soil hydraulic conductivity was found to vary during the year and also spatially (i.e., rows vs. inter-rows) due to crusting, tillage and vegetation cover. A 55 mm rainfall event resulted in a decrease of the saturated soil hydraulic conductivity,Ks, by a factor of 1.6 in the inter-row areas, due to the formation of a crusted layer at the surface. The same rainfall event did not determine aKsreduction in the row areas (i.e.,Ksdecreased by a non-significant factor of 1.05) because the vegetation cover intercepted the raindrops and therefore prevented alteration of the soil surface. The developed ring insertion methodology on crusted soil, implying pre-moistening through the periphery of the sampled surface, together with the very small insertion depth of the ring (0.01 m), prevented visible fractures. Consequently, Beerkan tests carried out along and between the vine-rows and data analysis by the BEST algorithm allowed to assess crusting-dependent reductions in hydraulic conductivity with extemporaneous measurements alone. The reliability of the tested technique was also confirmed by the results of the numerical simulation of the infiltration process in a crusted soil. Testing the Beerkan infiltration run in other crusted soils and establishing comparisons with other experimental methodologies appear advisable to increase confidence on the reliability of the method that seems suitable for simple characterization of crusted soils.


Koedoe ◽  
2012 ◽  
Vol 54 (1) ◽  
Author(s):  
Edward S. Riddell ◽  
Ahmed Khan ◽  
Benjamin Mauck ◽  
Simphiwe Ngcobo ◽  
Jonathan Pasi ◽  
...  

There has been significant attention focused on the impacts of fire frequency and season of burn on ecological processes in the Kruger National Park (KNP). Whilst there has been some examination of these fire effects on soil properties, the explicit linkages of these effects to the hydrology of soils in burnt areas has remained a gap in our understanding. During August 2010, a field scoping campaign was undertaken to assess the impacts, if any, of long-term fire treatments on the hydrology of soils on the experimental burn plots (EBPs) in the KNP. Using various hydrometric and soil physical characterisation instruments soil, hydraulic conductivity and soil strength variations were determined across the extreme fire treatment on the EBPs, the annual August (high fire frequency) plots and the control (no burn) plots, on both the granite and basalt geologies of Pretoriuskop and Satara, respectively. It was found that there were soil hydrological and structural differences to fire treatments on the basalt burn plots, but that these were not as clear on the granite burn plots. In particular, hot, frequent fires appeared to reduce the variation in soil hydraulic conductivity on the annual burn plots on the basalts and led to reduced cohesive soil strength at the surface.Conservation implications: The KNP burn plots are one of the longest running and well studied fire experiments on African savannahs. However, the impacts of fire management on hydrological processes in these water-limited ecosystems remains a gap in our understanding and needs to be considered within the context of climate and land-use changes in the savannah biome.


Water ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Vincenzo Alagna ◽  
Simone Di Prima ◽  
Jesús Rodrigo-Comino ◽  
Massimo Iovino ◽  
Mario Pirastru ◽  
...  

Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
Mohammad Reza Neyshabouri ◽  
Mehdi Rahmati ◽  
Claude Doussan ◽  
Boshra Behroozinezhad

Unsaturated soil hydraulic conductivity K is a fundamental transfer property of soil but its measurement is costly, difficult, and time-consuming due to its large variations with water content (θ) or matric potential (h). Recently, C. Doussan and S. Ruy proposed a method/model using measurements of the electrical conductivity of soil core samples to predict K(h). This method requires the measurement or the setting of a range of matric potentials h in the core samples—a possible lengthy process requiring specialised devices. To avoid h estimation, we propose to simplify that method by introducing the particle-size distribution (PSD) of the soil as a proxy for soil pore diameters and matric potentials, with the Arya and Paris (AP) model. Tests of this simplified model (SM) with laboratory data on a broad range of soils and using the AP model with available, previously defined parameters showed that the accuracy was lower for the SM than for the original model (DR) in predicting K (RMSE of logK = 1.10 for SM v. 0.30 for DR; K in m s–1). However, accuracy was increased for SM when considering coarse- and medium-textured soils only (RMSE of logK = 0.61 for SM v. 0.26 for DR). Further tests with 51 soils from the UNSODA database and our own measurements, with estimated electrical properties, confirmed good agreement of the SM for coarse–medium-textured soils (<35–40% clay). For these textures, the SM also performed well compared with the van Genuchten–Mualem model. Error analysis of SM results and fitting of the AP parameter showed that most of the error for fine-textured soils came from poorer adequacy of the AP model’s previously defined parameters for defining the water retention curve, whereas this was much less so for coarse-textured soils. The SM, using readily accessible soil data, could be a relatively straightforward way to estimate, in situ or in the laboratory, K(h) for coarse–medium-textured soils. This requires, however, a prior check of the predictive efficacy of the AP model for the specific soil investigated, in particular for fine-textured/structured soils and when using previously defined AP parameters.


1980 ◽  
Vol 44 (1) ◽  
pp. 3-7 ◽  
Author(s):  
P. L. Libardi ◽  
K. Reichardt ◽  
D. R. Nielsen ◽  
J. W. Biggar

Sign in / Sign up

Export Citation Format

Share Document