scholarly journals Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem

Geoderma ◽  
2022 ◽  
Vol 407 ◽  
pp. 115536
Author(s):  
José Luis Moreno ◽  
Felipe Bastida ◽  
Marta Díaz-López ◽  
Yunkai Li ◽  
Yunpeg Zhou ◽  
...  
2019 ◽  
Vol 13 (1) ◽  
pp. 20-26
Author(s):  
Feng Sun ◽  
Yuyi Ou ◽  
Qiaojing Ou ◽  
Lingda Zeng ◽  
Hanxia Yu ◽  
...  

Abstract Aims Natural hybridization between invasive and native species, as a form of adaptive evolution, threatens biodiversity worldwide. However, the potential invasive mechanisms of hybrids remain essentially unexplored, especially insights from soil chemical properties and soil microbial communities. Methods In a field experiment, soil microbial community, potassium-solubilizing bacteria, phosphorus-solubilizing bacteria, enzyme activities, and light-saturated photosynthetic rate were measured in invasive Sphagneticola trilobata and its hybrid with native Sphagneticola calendulacea in 2 years. Important Findings In general, soil dissolved organic carbon and the biomass of phosphorus-solubilizing bacteria were significantly higher under the hybrid treatment than S. trilobata and S. calendulacea. However, there were no significant differences in acid phosphatase, total PLFAs, bacterial PLFAs, fungi PLFAs, cellulase, and urase in these treatments. The hybrids had significantly higher light-saturated photosynthetic rate, photosynthetic nitrogen-, phosphorus-, potassium- use efficiencies than the invasive S. trilobata, but no significant difference with S. calendulacea. The total biomass and root biomass of hybrids were higher than S. calendulacea. Our results indicate that the hybrids species have a higher invasive potential than S. calendulacea, which may aggravate the local extinction of S. calendulacea in the future.


2021 ◽  
Author(s):  
Li Liu ◽  
Hailu Cao ◽  
Yannan Geng ◽  
Ya Fan ◽  
Haiyang Feng ◽  
...  

Abstract It is of great importance to understand the effects of cropping practices of Bupleurum chinense on the properties of rhizosphere soil. Therefore, the chemical properties of rhizosphere soil and the rhizosphere microbiome were assessed in the field trial with Bupleurum and three cropping practices (continuous monocropping, Bupleurum-corn intercropping and Bupleurum-corn rotation). The results showed cropping practices changed the chemical properties of the rhizosphere soil and composition, structure and diversity of the rhizosphere microbial communities. Continuous monocropping of Bupleurum chinense not only decreased soil pH and the contents of NO3--N and available K, but also decreased the alpha diversity of bacteria and beneficial microorganisms. However, Bupleurum-corn rotation improved soil chemical properties and reduced the abundance of harmful microorganisms. Soil chemical properties, especially the contents of NH4+-N, soil organic matter (SOM) and available K, were the key factors affecting the structure and composition of microbial communities in the rhizosphere soil. These findings could provide a new basis for overcoming problems associated with continuous cropping and promote development of B. chinense planting industry by improving soil microbial communities.


Sign in / Sign up

Export Citation Format

Share Document