scholarly journals Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community

Geoderma ◽  
2022 ◽  
Vol 407 ◽  
pp. 115570
Author(s):  
Yan Peng ◽  
Martin Holmstrup ◽  
Inger Kappel Schmidt ◽  
An De Schrijver ◽  
Stephanie Schelfhout ◽  
...  
CATENA ◽  
2017 ◽  
Vol 150 ◽  
pp. 223-229 ◽  
Author(s):  
Yahya Kooch ◽  
Behnaz Samadzadeh ◽  
Seyed Mohsen Hosseini

2021 ◽  
Author(s):  
Robert Reuter ◽  
Olga Ferlian ◽  
Mika Tarkka ◽  
Nico Eisenhauer ◽  
Karin Pritsch ◽  
...  

Abstract Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species´ mycorrhizal association, but their uptake rather depended on the competitor indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association, but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.


2013 ◽  
Vol 16 (8) ◽  
pp. 1045-1053 ◽  
Author(s):  
Pablo García-Palacios ◽  
Fernando T. Maestre ◽  
Jens Kattge ◽  
Diana H. Wall

2015 ◽  
Vol 166 (6) ◽  
pp. 380-388 ◽  
Author(s):  
Pascale Weber ◽  
Caroline Heiri ◽  
Mathieu Lévesque ◽  
Tanja Sanders ◽  
Volodymyr Trotsiuk ◽  
...  

Growth potential and climate sensitivity of tree species in the ecogram for the colline and submontane zone In forestry practice a large amount of empirical knowledge exists about the productivity of individual tree species in relation to site properties. However, so far, only few scientific studies have investigated the influence of soil properties on the growth potential of various tree species along gradients of soil water as well as nutrient availability. Thus, there is a research gap to estimate the productivity and climate sensitivity of tree species under climate change, especially regarding productive sites and forest ad-mixtures in the lower elevations. Using what we call a «growth ecogram», we demonstrate species- and site-specific patterns of mean annual basal area increment and mean sensitivity of ring width (strength of year-to-year variation) for Fagus sylvatica, Quercus spp., Fraxinus excelsior, Picea abies, Abies alba and Pinus sylvestris, based on tree-ring data from 508 (co-)dominant trees on 27 locations. For beech, annual basal area increment ( average 1957–2006) was significantly correlated with tree height of the dominant sampling trees and proved itself as a possible alternative for assessing site quality. The fact that dominant trees of the different tree species showed partly similar growth potential within the same ecotype indicates comparable growth limitation by site conditions. Mean sensitivity of ring width – a measure of climate sensitivity – had decreased for oak and ash, while it had increased in pine. Beech showed diverging reactions with increasing sensitivity at productive sites (as measured by the C:N ratio of the topsoil), suggesting an increasing limitation by climate at these sites. Hence, we derive an important role of soil properties in the response of forests to climate change at lower elevations, which should be taken into account when estimating future forest productivity.


2021 ◽  
Vol 4 ◽  
Author(s):  
Ellen Desie ◽  
Bart Muys ◽  
Boris Jansen ◽  
Lars Vesterdal ◽  
Karen Vancampenhout

Despite the general agreement that maximizing carbon storage and its persistence in forest soils are top priorities in the context of climate change mitigation, our knowledge on how to steer soil organic carbon (SOC) through forest management remains limited. For some soils, tree species selection based on litter quality has been shown a powerful measure to boost SOC stocks and stability, whereas on other locations similar efforts result in insignificant or even opposite effects. A better understanding of which mechanisms underpin such context-dependency is needed in order to focus and prioritize management efforts for carbon sequestration. Here we discuss the key role of acid buffering mechanisms in belowground ecosystem functioning and how threshold behavior in soil pH mediates tree species effects on carbon cycling. For most forests around the world, the threshold between the exchange buffer and the aluminum buffer around a pH-H2O of 4.5 is of particular relevance. When a shift between these buffer domains occurs, it triggers changes in multiple compartments in the soil, ultimately altering the way carbon is incorporated and transformed. Moreover, the impact of such a shift can be amplified by feedback loops between tree species, soil biota and cation exchange capacity (CEC). Hence, taking into account non-linearities related to acidity will allow more accurate predictions on the size and direction of the effect of litter quality changes on the way soil organic carbon is stored in forest soils. Consequently, this will allow developing more efficient, context-explicit management strategies to optimize SOC stocks and their stability.


Ecosystems ◽  
2017 ◽  
Vol 20 (6) ◽  
pp. 1151-1163 ◽  
Author(s):  
Arthur A. D. Broadbent ◽  
Kate H. Orwin ◽  
Duane A. Peltzer ◽  
Ian A. Dickie ◽  
Norman W. H. Mason ◽  
...  

2007 ◽  
Vol 71 (4) ◽  
pp. 1389-1397 ◽  
Author(s):  
A. E. Russell ◽  
J. W. Raich ◽  
O. J. Valverde-Barrantes ◽  
R. F. Fisher

Sign in / Sign up

Export Citation Format

Share Document