Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy

Geoderma ◽  
2022 ◽  
Vol 409 ◽  
pp. 115646
Author(s):  
Erik S. Button ◽  
David R. Chadwick ◽  
David L. Jones
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Honglin He ◽  
Rong Ge ◽  
Xiaoli Ren ◽  
Li Zhang ◽  
Qingqing Chang ◽  
...  

AbstractChinese forests cover most of the representative forest types in the Northern Hemisphere and function as a large carbon (C) sink in the global C cycle. The availability of long-term C dynamics observations is key to evaluating and understanding C sequestration of these forests. The Chinese Ecosystem Research Network has conducted normalized and systematic monitoring of the soil-biology-atmosphere-water cycle in Chinese forests since 2000. For the first time, a reference dataset of the decadal C cycle dynamics was produced for 10 typical Chinese forests after strict quality control, including biomass, leaf area index, litterfall, soil organic C, and the corresponding meteorological data. Based on these basic but time-discrete C-cycle elements, an assimilated dataset of key C cycle parameters and time-continuous C sequestration functions was generated via model-data fusion, including C allocation, turnover, and soil, vegetation, and ecosystem C storage. These reference data could be used as a benchmark for model development, evaluation and C cycle research under global climate change for typical forests in the Northern Hemisphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Angom Sarjubala Devi ◽  
Kshetrimayum Suresh Singh

AbstractThe Northeastern hilly states of India harbor nearly 90 species of bamboos, 41 of which are endemic to the region. Estimation of C-storage and C-sequestration in aboveground biomass of two common bamboo species namely Bambusa tulda and Dendrocalamus longispathus was carried out in Mizoram-one of the eight states of Northeastern India. Recording of density of culms was done by quadrate method and harvesting of culms was done to estimate the aboveground biomass. C-storage in different components of the culms was found out for three age classes namely 1, 2 and ≥ 3 year old culms. Aboveground biomass ranged from 73.58 to 127 Mg/ha in Bambusa tulda and 115 to 150 Mg/ha in Dendrocalamus longispathus. Culm density and aboveground biomass were maximum in the ≥ 3 year age class in both the species. C-storage ranged from 36.34 to 64.00 Mg/ha in Bambusa tulda and 50.11 to 65.16 Mg/ha in Dendrocalamus longispathus. Although having lower aboveground biomass the rate of C-sequestration was higher in Bambusa tulda with 27.79 Mg/ha/year than Dendrocalamus longispathus which have 15.36 Mg/ha/year. The reason was attributed to higher increment of culm density and DBH of the older age class in the second year study period in Bambusa tulda.


Author(s):  
Meng Na ◽  
Xiaoyang Sun ◽  
Yandong Zhang ◽  
Zhihu Sun ◽  
Johannes Rousk

AbstractSoil carbon (C) reservoirs held in forests play a significant role in the global C cycle. However, harvesting natural forests tend to lead to soil C loss, which can be countered by the establishment of plantations after clear cutting. Therefore, there is a need to determine how forest management can affect soil C sequestration. The management of stand density could provide an effective tool to control soil C sequestration, yet how stand density influences soil C remains an open question. To address this question, we investigated soil C storage in 8-year pure hybrid larch (Larix spp.) plantations with three densities (2000 trees ha−1, 3300 trees ha−1 and 4400 trees ha−1), established following the harvesting of secondary mixed natural forest. We found that soil C storage increased with higher tree density, which mainly correlated with increases of dissolved organic C as well as litter and root C input. In addition, soil respiration decreased with higher tree density during the most productive periods of warm and moist conditions. The reduced SOM decomposition suggested by lowered respiration was also corroborated with reduced levels of plant litter decomposition. The stimulated inputs and reduced exports of C from the forest floor resulted in a 40% higher soil C stock in high- compared to low-density forests within 8 years after plantation, providing effective advice for forest management to promote soil C sequestration in ecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 484
Author(s):  
Andrew M. Bierer ◽  
April B. Leytem ◽  
Robert S. Dungan ◽  
Amber D. Moore ◽  
David L. Bjorneberg

Insufficient characterization of soil organic carbon (SOC) dynamics in semi-arid climates contributes uncertainty to SOC sequestration estimates. This study estimated changes in SOC (0–30 cm depth) due to variations in manure management, tillage regime, winter cover crop, and crop rotation in southern Idaho (USA). Empirical data were used to drive the Denitrification Decomposition (DNDC) model in a “default” and calibrated capacity and forecast SOC levels until 2050. Empirical data indicates: (i) no effect (p = 0.51) of winter triticale on SOC after 3 years; (ii) SOC accumulation (0.6 ± 0.5 Mg ha–1 year–1) under a rotation of corn-barley-alfalfax3 and no change (p = 0.905) in a rotation of wheat-potato-barley-sugarbeet; (iii) manure applied annually at rate 1X is not significantly different (p = 0.75) from biennial application at rate 2X; and (iv) no significant effect of manure application timing (p = 0.41, fall vs. spring). The DNDC model simulated empirical SOC and biomass C measurements adequately in a default capacity, yet specific issues were encountered. By 2050, model forecasting suggested: (i) triticale cover resulted in SOC accrual (0.05–0.27 Mg ha–1 year–1); (ii) when manure is applied, conventional tillage regimes are favored; and (iii) manure applied treatments accrue SOC suggesting a quadratic relationship (all R2 > 0.85 and all p < 0.0001), yet saturation behavior was not realized when extending the simulation to 2100. It is possible that under very large C inputs that C sequestration is favored by DNDC which may influence “NetZero” C initiatives.


2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


2018 ◽  
Vol 15 (1) ◽  
pp. 263-278 ◽  
Author(s):  
Ana López-Ballesteros ◽  
Cecilio Oyonarte ◽  
Andrew S. Kowalski ◽  
Penélope Serrano-Ortiz ◽  
Enrique P. Sánchez-Cañete ◽  
...  

Abstract. Currently, drylands occupy more than one-third of the global terrestrial surface and are recognized as areas vulnerable to land degradation. The concept of land degradation stems from the loss of an ecosystem's biological productivity due to long-term loss of natural vegetation or depletion of soil nutrients. Drylands' key role in the global carbon (C) balance has been recently demonstrated, but the effects of land degradation on C sequestration by these ecosystems still need to be investigated. In the present study, we compared net C and water vapor fluxes, together with satellite, meteorological and vadose zone (CO2, water content and temperature) measurements, between two nearby (∼ 23 km) experimental sites representing “natural” (i.e., site of reference) and “degraded” grazed semiarid grasslands. We utilized data acquired over 6 years from two eddy covariance stations located in southeastern Spain with highly variable precipitation magnitude and distribution. Results show a striking difference in the annual C balances with an average net CO2 exchange of 196 ± 40 (C release) and −23 ± 2 g C m−2 yr−1 (C fixation) for the degraded and natural sites, respectively. At the seasonal scale, differing patterns in net CO2 fluxes were detected over both growing and dry seasons. As expected, during the growing seasons, greater net C uptake over longer periods was observed at the natural site. However, a much greater net C release, probably derived from subterranean ventilation, was measured at the degraded site during drought periods. After subtracting the nonbiological CO2 flux from net CO2 exchange, flux partitioning results point out that, during the 6 years of study, gross primary production, ecosystem respiration and water use efficiency were, on average, 9, 2 and 10 times higher, respectively, at the natural site versus the degraded site. We also tested differences in all monitored meteorological and soil variables and CO2 at 1.50 m belowground was the variable showing the greatest intersite difference, with ∼ 1000 ppm higher at the degraded site. Thus, we believe that subterranean ventilation of this vadose zone CO2, previously observed at both sites, partly drives the differences in C dynamics between them, especially during the dry season. It may be due to enhanced subsoil–atmosphere interconnectivity at the degraded site.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 83 ◽  
Author(s):  
W. E. Cotching

Soil carbon (C) stocks were calculated for Tasmanian soil orders to 0.3 and 1.0 m depth from existing datasets. Tasmanian soils have C stocks of 49–117 Mg C/ha in the upper 0.3 m, with Ferrosols having the largest soil C stocks. Mean soil C stocks in agricultural soils were significantly lower under intensive cropping than under irrigated pasture. The range in soil C within soil orders indicates that it is critical to determine initial soil C stocks at individual sites and farms for C accounting and trading purposes, because the initial soil C content will determine if current or changed management practices are likely to result in soil C sequestration or emission. The distribution of C within the profile was significantly different between agricultural and forested land, with agricultural soils having two-thirds of their soil C in the upper 0.3 m, compared with half for forested soils. The difference in this proportion between agricultural and forested land was largest in Dermosols (0.72 v. 0.47). The total amount of soil C in a soil to 1.0 m depth may not change with a change in land use, but the distribution can and any change in soil C deeper in the profile might affect how soil C can be managed for sequestration. Tasmanian soil C stocks are significantly greater than those in mainland states of Australia, reflecting the lower mean annual temperature and higher precipitation in Tasmania, which result in less oxidation of soil organic matter.


Sign in / Sign up

Export Citation Format

Share Document