Influence of groundwater flow on the ground heat exchanger performance and ground temperature distributions: A comprehensive review of analytical, numerical and experimental studies

Geothermics ◽  
2022 ◽  
Vol 100 ◽  
pp. 102342
Author(s):  
G.S. Jia ◽  
Z.D. Ma ◽  
Z.H. Xia ◽  
J.W. Wang ◽  
Y.P. Zhang ◽  
...  
2020 ◽  
Vol 276 ◽  
pp. 115453
Author(s):  
Z.D. Ma ◽  
G.S. Jia ◽  
X. Cui ◽  
Z.H. Xia ◽  
Y.P. Zhang ◽  
...  

Author(s):  
Balaji Kumar

Abstract The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The integration of SGE with heat pump using pipe network is extensively reviewed. The open loop and closed loop (vertical, horizontal, energy piles) pipe networks are the most common type of ground heat exchanging methods. The objective of the review is to improve the heat exchanger effectiveness through various design aspects according to the local climatic conditions. This comprehensive review part II contains the research details pertaining to the last two decades about ground heat exchangers (geometrical aspects, borehole material, grout material, thermal response test, analytical and numerical models). Also, the factors influencing the ground heat exchanger's performance such as heat transfer fluid, groundwater flow, and soil properties are discussed in detail. This paper highlights the recent research findings and a potential gap in the ground heat exchanger.


Author(s):  
Quan Liao ◽  
Chao Zhou ◽  
Wenzhi Cui ◽  
Tien-Chien Jen

The effective pipe-to-borehole and pipe-to-pipe thermal resistances of vertical single U-shape ground heat exchanger are numerically studied. The non-uniform temperature distributions along perimeter of both borehole and outside diameter of two pipes are taken into account to evaluate both the pipe-to-borehole and pipe-to-pipe thermal resistances. The best-fit correlations for these two thermal resistances are proposed and compared with the available equations in the literature. It is found that the present correlations of effective pipe-to-borehole and pipe-to-pipe thermal resistances are more accurate than those of available formulas.


Author(s):  
Quan Liao ◽  
Chao Zhou ◽  
Wenzhi Cui ◽  
T. C. Jen

A new 2D numerical model of a single U-tube ground heat exchanger is proposed and a four-thermal-resistance model is adopted to evaluate the effective pipe-to-borehole, pipe-to-pipe, and borehole-to-borehole thermal resistances. The influence of temperature distributions on both borehole surface and outer diameter of two pipes to these thermal resistances has been thoroughly studied. The best-fit correlations of effective pipe-to-borehole, pipe-to-pipe, and borehole-to-borehole thermal resistances are proposed and compared with the available equations in the literature. It is found that the present correlations of thermal resistances for ground heat exchanger are more accurate than those of available formulas. Furthermore, based on these obtained thermal resistance correlations, an analytical model is proposed to evaluate the heat transfer performance of the ground heat changer.


2021 ◽  
Vol 2021.74 (0) ◽  
pp. B22
Author(s):  
Kanaha MORI ◽  
Koutaro TSUBAKI ◽  
Retsu HARADA ◽  
Yukari KAI ◽  
Yukari WATASE ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 4486 ◽  
Author(s):  
Hossein Javadi ◽  
Seyed Mousavi Ajarostaghi ◽  
Marc Rosen ◽  
Mohsen Pourfallah

Geothermal energy systems can help in achieving an environmentally friendly and more efficient energy utilization, as well as enhanced power generation and building heating/cooling, thereby making energy systems more sustainable. The role of the backfill material, which fills the space between a pipe and the surrounding soil, is important in the operation of ground heat exchangers. Among the review articles on parameters affecting ground heat exchanger performance published over the past eight years, only two discuss types of backfill materials, even though the importance of these materials is significant. However, no review has yet been published exclusively on the kinds of backfill materials used in ground heat exchangers. This article addresses this need by providing a comprehensive review of a variety of types of backfill materials and their effects on ground heat exchanger performance. For organizational purposes, the backfill materials are divided into two categories: conventional backfill materials (pure and mixed materials) and modern backfill materials (improved phase change materials). Both categories are described in detail. It is shown that bentonite has been used considerably as a conventional backfill material in ground heat exchangers, followed by silica sand and coarse/fine sand. Moreover, acid and shape-stabilized phase change materials have been applied mostly as modern backfill materials in ground heat exchangers. It is observed, generally, that conventional backfill materials are used more than modern backfill materials in ground heat exchangers. It should be noted that the data covered in this study are not from all the articles published in the last eight years, but rather from a subset based on specific criteria (i.e., English-language papers published in reputable journals). These articles were published by authors from numerous countries. The results may, as a consequence, have some corresponding limitations, but these are likely to be minor.


Sign in / Sign up

Export Citation Format

Share Document