scholarly journals PaPYL9 is Involved in the Regulation of Apricot Fruit Ripening through ABA Signaling Pathway

Author(s):  
Mengxiao Jia ◽  
Jing Feng ◽  
Lina Zhang ◽  
Shikui Zhang ◽  
Wanpeng Xi
Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


Planta ◽  
2018 ◽  
Vol 248 (4) ◽  
pp. 919-931 ◽  
Author(s):  
Lulu Bi ◽  
Lin Weng ◽  
Zhuyan Jiang ◽  
Han Xiao

2021 ◽  
Vol 256 ◽  
pp. 153309
Author(s):  
Tiantian Xiong ◽  
Qinqin Tan ◽  
Shaoshan Li ◽  
Chiristian Mazars ◽  
Jean-Philippe Galaud ◽  
...  

2016 ◽  
Vol 17 (5) ◽  
pp. 693 ◽  
Author(s):  
Muhammad Jaffar ◽  
Aiping Song ◽  
Muhammad Faheem ◽  
Sumei Chen ◽  
Jiafu Jiang ◽  
...  

2016 ◽  
pp. pp.00059.2016
Author(s):  
Guangchao Zang ◽  
Hanyan Zou ◽  
Yuchan Zhang ◽  
Zheng Xiang ◽  
Junli Huang ◽  
...  

Author(s):  
Agnieszka Sirko ◽  
Anna Wawrzyńska ◽  
Jerzy Brzywczy ◽  
Marzena Sieńko

A rapid and appropriate genetic and metabolic acclimation, which is crucial for plants’ survival in a changing environment, is maintained due to the coordinated action of plant hormones and cellular degradation mechanisms influencing proteostasis. The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of autophagy in controlling ABA signaling. This field has been extensively investigated and new discoveries are constantly being provided. We present updated information on the components of the ABA signaling pathway, particularly on transcription factors modified by different E3 ligases. Then, we focus on the role of selective autophagy in ABA pathway control and review novel evidence on the involvement of autophagy in different parts of the ABA signaling pathway that are important for crosstalk with other hormones, particularly cytokinins and brassinosteroids.


Sign in / Sign up

Export Citation Format

Share Document