scholarly journals Effect of the soft tissue artifact on marker measurements and on the calculation of the helical axis of the knee during a gait cycle: A study on the CAMS-Knee data set

2021 ◽  
Vol 80 ◽  
pp. 102866
Author(s):  
Andrea Ancillao ◽  
Erwin Aertbeliën ◽  
Joris De Schutter
2017 ◽  
Author(s):  
Dana Solav ◽  
MB Rubin ◽  
Alon Wolf

Existing methods which compensate for the Soft Tissue Artifact (STA) in optoelectronic motion measurements estimate the rigid motion of a nearly rigid underlying body segment based on analysis of the motion of all fiducial markers. The objective of the proposed Triangular Cosserat Point Elements (TCPE) method is to estimate the motion of the underlying body segment even when the STA in the entire cluster of markers can be large. This is accomplished by characterizing the cluster of markers with TCPEs defined by triangles based on all combinations of three markers. Then, scalar deformation measures characterizing the magnitudes of strain and relative rotation of pairs of TCPEs are defined for each TCPE. These deformation measures are used to define a filtered group of TCPEs which best represents the motion of the underlying body segment. The method was tested using an experimental setup that consists of a rigid pendulum with a deformable 300ml silicone breast implant attached to it as a simulation of the soft tissue around a bony segment. The rotation angles extracted from markers on the deformable implant were compared with simultaneous measurements of the rigid pendulum using an optoelectronic system. Analysis of the experimental data shows that this filtering process substantially reduces the error due to the STA even though the data set includes large deformations. In particular, the analysis shows that the error reduction using the TCPE approach is larger than the reductions obtained using standard least-squares minimization methods.


Author(s):  
Sebastian Halm ◽  
David Haberthür ◽  
Elisabeth Eppler ◽  
Valentin Djonov ◽  
Andreas Arnold

Abstract Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear.


2006 ◽  
Vol 06 (04) ◽  
pp. 373-384
Author(s):  
ERIC BERTHONNAUD ◽  
JOANNÈS DIMNET

Joint centers are obtained from data treatment of a set of markers placed on the skin of moving limb segments. Finite helical axis (FHA) parameters are calculated between time step increments. Artifacts associated with nonrigid body movements of markers entail ill-determination of FHA parameters. Mean centers of rotation may be calculated over the whole movement, when human articulations are likened to spherical joints. They are obtained using numerical technique, defining point with minimal amplitude, during joint movement. A new technique is presented. Hip, knee, and ankle mean centers of rotation are calculated. Their locations depend on the application of two constraints. The joint center must be located next to the estimated geometric joint center. The geometric joint center may migrate inside a cube of possible location. This cube of error is located with respect to the marker coordinate systems of the two limb segments adjacent to the joint. Its position depends on the joint and the patient height, and is obtained from a stereoradiographic study with specimen. The mean position of joint center and corresponding dispersion are obtained through a minimization procedure. The location of mean joint center is compared with the position of FHA calculated between different sequential steps: time sequential step, and rotation sequential step where a minimal rotation amplitude is imposed between two joint positions. Sticks are drawn connecting adjacent mean centers. The animation of stick diagrams allows clinical users to estimate the displacements of long bones (femur and tibia) from the whole data set.


2015 ◽  
Vol 44 (4) ◽  
pp. 1181-1190 ◽  
Author(s):  
Dana Solav ◽  
M. B. Rubin ◽  
Andrea Cereatti ◽  
Valentina Camomilla ◽  
Alon Wolf

2011 ◽  
Vol 27 (3) ◽  
pp. 258-265 ◽  
Author(s):  
Yanxin Zhang ◽  
David G. Lloyd ◽  
Amity C. Campbell ◽  
Jacqueline A. Alderson

The purpose of this study was to quantify the effect of soft tissue artifact during three-dimensional motion capture and assess the effectiveness of an optimization method to reduce this effect. Four subjects were captured performing upper-arm internal-external rotation with retro-reflective marker sets attached to their upper extremities. A mechanical arm, with the same marker set attached, replicated the tasks human subjects performed. Artificial sinusoidal noise was then added to the recorded mechanical arm data to simulate soft tissue artifact. All data were processed by an optimization model. The result from both human and mechanical arm kinematic data demonstrates that soft tissue artifact can be reduced by an optimization model, although this error cannot be successfully eliminated. The soft tissue artifact from human subjects and the simulated soft tissue artifact from artificial sinusoidal noise were demonstrated to be considerably different. It was therefore concluded that the kinematic noise caused by skin movement artifact during upper-arm internal-external rotation does not follow a sinusoidal pattern and cannot be effectively eliminated by an optimization model.


Author(s):  
Massoud Akbarshahi ◽  
Justin W. Fernandez ◽  
Anthony Schache ◽  
Richard Baker ◽  
Marcus G. Pandy

The ability to accurately measure joint kinematics in vivo is of critical importance to researchers in the field of biomechanics [1]. Applications range from the quantitative evaluation of different surgical techniques, treatment methods and/or implant designs, to the development of computer-based models capable of simulating normal and pathological musculoskeletal conditions [1,2]. Currently, non-invasive marker-based three dimensional (3D) motion analysis is the most commonly used method for quantitative assessment of normal and pathological locomotion. The accuracy of this technique is influenced by movement of the soft tissues relative to the underlying bones, which causes inaccuracies in the determination of segmental anatomical coordinate systems and tracking of segmental motion. The purpose of this study was to quantify the errors in the measurement of knee-joint kinematics due solely to soft-tissue artifact (STA) in healthy subjects. To facilitate valid inter-subject comparisons of the kinematic data, relevant anatomical coordinate systems were defined using 3D bone models generated from magnetic resonance imaging (MRI).


Paleobiology ◽  
2012 ◽  
Vol 38 (3) ◽  
pp. 486-507 ◽  
Author(s):  
Karl T. Bates ◽  
Roger B. J. Benson ◽  
Peter L. Falkingham

We investigate whether musculoskeletal anatomy and three-dimensional (3-D) body proportions were modified during the evolution of large (>6000 kg) body size in Allosauroidea (Dinosauria: Theropoda). Three adaptations for maintaining locomotor performance at large body size, related to muscle leverage, mass, and body proportions, are tested and all are unsupported in this analysis. Predictions from 3-D musculoskeletal models of medium-sized (Allosaurus) and large-bodied (Acrocanthosaurus) allosauroids suggest that muscle leverage scaled close to isometry, well below the positive allometry required to compensate for declining muscle cross-sectional area with increasing body size. Regression analyses on a larger allosauroid data set finds slight positive allometry in the moment arms of major hip extensors, but isometry is included within confidence limits. Contrary to other recent studies of large-bodied theropod clades, we found no compelling evidence for significant positive allometry in muscle mass between exemplar medium- and large-bodied allosauroids. Indeed, despite the uncertainty in quantitative soft tissue reconstruction, we find strong evidence for negative allometry in the caudofemoralis longus muscle, the single largest hip extensor in non-avian theropods. Finally, we found significant inter-study variability in center-of-mass predictions for allosauroids, but overall observe that consistently proportioned soft tissue reconstructions produced similar predictions across the group, providing no support for a caudal shift in the center of mass in larger taxa that might otherwise reduce demands on hip extensor muscles during stance. Our data set provides further quantitative support to studies that argue for a significant decline in locomotor performance with increasing body size in non-avian theropods. However, although key pelvic limb synapomorphies of derived allosauroids (e.g., dorsomedially inclined femoral head) evolved at intermediate body sizes, they may nonetheless have improved mass support.


Author(s):  
Olaseni M. Bello ◽  
Wan Mohammad S. Wan Hassan ◽  
Norehan M. Nor

The Adult Male® and Adult Female® phantoms of ORNL were modified with Ir-192 source and additional tally cards from the MCNP® data library. The lung and eleven soft tissues were used for the study. The soft tissues include Liver, Stomach, Ovaries, Testes, Brain, Thyroid, Kidney, Pancreas, Gall Bladder, Heart, and the Small Intestine. The computational simulation was achieved using MCNPX with nps of 107 , and the data set of the lung and soft tissues derived for Malaysian population [14]. The relative error, R was <0.05 for F4 and the F6 tallies across the energy range studied. The results obtained for 0.1-10.0 MeV energies for the F4 and F6 tallies were used to estimate the mass stopping power, S/ρ (MeVg1 cm2 ) and the linear stopping power, S (MeV/cm). The result compares favorably among the tissues. This result is very relevant and useful in validating an on-going lung and soft tissue model construction


Sign in / Sign up

Export Citation Format

Share Document