scholarly journals Inter-Turn Short-Circuit Fault Ride-Through for DFIG Wind Turbines

2020 ◽  
Vol 53 (2) ◽  
pp. 12757-12762
Author(s):  
Kuichao Ma ◽  
Jiangsheng Zhu ◽  
Mohsen Soltani ◽  
Amin Hajizadeh ◽  
Zhe Chen
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mehdi Firouzi ◽  
Mohammadreza Shafiee ◽  
Mojtaba Nasiri

Fault ride-through (FRT) requirement is a matter of great concern for doubly fed induction generator (DFIG-) based wind turbines (WTs). This study presents a nonlinear variable resistor- (NVR-) based bridge-type fault current limiter (BFCL) to augment the FRT performance of DFIG-based WTs. First, the BFCL operation and nonlinear control design consideration of the proposed NVR-based BFCL are presented. Then, the NVR-BFCL performance is validated through simulation in PSCAD/EMTDC software. In addition, the NVR-based BFCL performance is compared with the fixed resistor- (FR-) based BFCL for a three-phase symmetrical short circuit fault at the grid side. Simulation results reveal that the NVR-based BFCL provides a smooth and effective FRT scheme and outperforms the FR-based BFCL.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2079 ◽  
Author(s):  
Yingjie Wang ◽  
Bo Yang ◽  
Huifang Zuo ◽  
Haiyuan Liu ◽  
Haohao Yan

A modular multilevel converter based high voltage direct current (MMC-HVDC) with DC fault self-clearing is adopted to deal with the DC short-circuit fault. However, the constant power load characteristic of the sub-modules causes capacitor voltages to diverge and the converter to go out of hot standby. To address this problem, a novel DC short-circuit fault ride through strategy is proposed. According to the polarities of grid voltages, the working or blockage of the upper and lower bridge arms is chosen according to six sections to obtain a cascaded star converter. The capacitor voltages of MMC sub-modules are maintained and balanced through the control similar to the cascaded star converter. Moreover, in order not to change zero crossing, a cluster balancing control method by scaling the amplitudes of the modulated waves is proposed to balance the capacitor voltages between phase clusters. The strategy also achieves the DC Bus line-to-line equipotential and no fault current generated. With the switches of two modes (normal operation and fault ride through operation) after the fault is cleared, the power transfer of MMC-HVDC can be recovered quickly. Finally, the effectiveness of the proposed fault ride through strategy is demonstrated on the 21-level MMC-HVDC simulation model in PSCAD/EMTDC.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Xinhan Meng ◽  
Ke-Jun Li ◽  
Zhuodi Wang ◽  
Wenning Yan ◽  
Jianguo Zhao

This paper proposes a hybrid modular multilevel converter (MMC) topology based on mismatched-cascade mechanism. The blocking conditions of different submodule (SM) structures under dc fault are analyzed and a series double submodule is presented. With series-double submodules and mismatched-cascade submodules, the proposed hybrid MMC can ride-through the dc side short-circuit fault and provide an output voltage with the feature of low harmonic content. This hybrid MMC topology can be used in the VSC based multiterminal dc (VSC-MTDC) transmission system. The dc fault ride-through properties of the new structure and the total harmonic distortion (THD) are analyzed compared with the previous full-bridge and clamp-double architectures. An appropriate fault blocking procedure is presented, and a typical four-terminal dc transmission simulation system is given in the power system simulation software. Finally, simulation of steady-state and dc bipolar short-circuit fault verifies that the MTDC system based on this new hybrid MMC topology is stabilized and can block the dc fault and return the nonfault parts to normal.


2005 ◽  
Vol 29 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Vladislav Akhmatov

Wind turbines equipped with full-load converter-connected asynchronous generators are a known concept. These have rating up to hundreds of kW and are a feasible concept for MW class wind turbines and may have advantages when compared to conventional wind turbines with directly connected generators.* The concept requires the use of full-scale frequency converters, but the mechanical gearbox is smaller than in conventional wind turbines of the same rating. Application of smaller gearbox may reduce the no-load losses in the wind turbines, which is why such wind turbines with converter connected generators may start operation at a smaller wind speed. Wind turbines equipped with such converted connected asynchronous generators are pitch-controlled and variable-speed. This allows better performance and control. The converter control may be applied to support the grid voltage at short-circuit faults and to improve the fault-ride-through capability of the wind turbines, which makes the concepts relevant for large wind farms. The Danish transmission system operator Energinet-DK has implemented the general model of wind turbines equipped with converter connected asynchronous generators with the simulation tool Powerfactory (DlgSilent). The article presents Energinet-DK's experience of modeling this feasible wind turbine concept.


Sign in / Sign up

Export Citation Format

Share Document