An in vitro bone-to-bone adhesion test method using the compression shear test

2021 ◽  
Vol 111 ◽  
pp. 102977
Author(s):  
Vanessa Lührs ◽  
Sebastian Stößlein ◽  
Karsten Thiel ◽  
Ingo Grunwald ◽  
Andreas Hartwig
Keyword(s):  
Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 678 ◽  
Author(s):  
Sigrid Rønneberg ◽  
Yizhi Zhuo ◽  
Caroline Laforte ◽  
Jianying He ◽  
Zhiliang Zhang

Low ice adhesion surfaces are a promising anti-icing strategy. However, reported ice adhesion strengths cannot be directly compared between research groups. This study compares results obtained from testing the ice adhesion strength on two types of surfaces at two different laboratories, testing two different types of ice with different ice adhesion test methods at temperatures of −10 and −18 °C. One laboratory used the centrifuge adhesion test and tested precipitation ice and bulk water ice, while the other laboratory used a vertical shear test and tested only bulk water ice. The surfaces tested were bare aluminum and a commercial icephobic coating, with all samples prepared in the same manner. The results showed comparability in the general trends, surprisingly, with the greatest differences for bare aluminum surfaces at −10 °C. For bulk water ice, the vertical shear test resulted in systematically higher ice adhesion strength than the centrifugal adhesion test. The standard deviation depends on the surface type and seems to scale with the absolute value of the ice adhesion strength. The experiments capture the overall trends in which the ice adhesion strength surprisingly decreases from −10 to −18 °C for aluminum and is almost independent of temperature for a commercial icephobic coating. In addition, the study captures similar trends in the effect of ice type on ice adhesion strength as previously reported and substantiates that ice formation is a key parameter for ice adhesion mechanisms. Repeatability should be considered a key parameter in determining the ideal ice adhesion test method.


1994 ◽  
Vol 8 (6) ◽  
pp. 635-650 ◽  
Author(s):  
George D. Vaughn ◽  
Bruce G. Frushour ◽  
William C. Dale

2013 ◽  
Vol 111 (4) ◽  
pp. 633-642 ◽  
Author(s):  
Gemma González-Ortiz ◽  
José Francisco Pérez ◽  
Rafael Gustavo Hermes ◽  
Francesc Molist ◽  
Rufino Jiménez-Díaz ◽  
...  

The inhibition of the attachment of bacteria to the intestine by receptor analogues could be a novel approach to prevent enterotoxigenicEscherichia coli(ETEC) K88-induced diarrhoea in piglets. The objective of the present study was to screen the ability of different feed ingredients (FI) to bind to ETEC K88 (adhesion test, AT) and to block its attachment to the porcine intestinal mucus (blocking test, BT) usingin vitromicrotitration-based models. In the AT, wheat bran (WB), casein glycomacropeptide (CGMP) and exopolysaccharides exhibited the highest adhesion to ETEC K88 (P< 0·001). In the BT, WB, CGMP and locust bean (LB) reduced the number of ETEC K88 attached to the intestinal mucus (P< 0·001). For WB and LB, fractionation based on their carbohydrate components was subsequently carried out, and each fraction was evaluated individually. None of the WB fractions reduced the adhesion of ETEC K88 to the mucus as did the original extract, suggesting that a protein or glycoprotein could be involved in the recognition process. With regard to the LB fractions, the water-extractable material reduced the adhesion of ETEC K88 (P< 0·001) to the mucus similar to the original extract (P< 0·001), indicating, in this case, that galactomannans or phenolic compounds could be responsible for the recognition process. In conclusion, among the FI screened, the soluble extracts obtained from WB, LB and CGMP exhibited the highest anti-adhesive properties against ETEC K88 in the BT. These results suggest that they may be good candidates to be included in diets of weaned piglets for the prevention of ETEC K88-induced diarrhoea.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Diane M. Citron ◽  
Yumi A. Warren ◽  
Kerin L. Tyrrell ◽  
Ellie J. C. Goldstein

Ceftaroline is a new cephalosporin with bactericidal activity against methicillin-resistant S. aureus (MRSA) as well as gram-negative pathogens. Variations of in vitro test conditions were found to affect ceftaroline activity, with 5% NaCl inhibiting growth and/or reducing the minimum inhibitory concentrations (MICs) for E. coli, K. pneumoniae, M. catarrhalis, H. influenzae, and streptococci, while an inoculum of 106 CFU/mL raised MICs of some E. coli, K. pneumoniae, and M. catarrhalis strains.


Sign in / Sign up

Export Citation Format

Share Document