Optimization and trading of district multi-energy system in university community considering carbon emission

Author(s):  
Jinjing Tan ◽  
Yang Li ◽  
Xiaoping Zhang
2021 ◽  
Vol 11 (15) ◽  
pp. 6968
Author(s):  
Hong Li ◽  
Yazhong Ye ◽  
Lanxin Lin

The integrated power and natural gas energy system (IPGES) is of great significance to promote the coordination and complementarity of multi-energy flow, and it is an important carrier to increase the proportion of wind power accommodation and achieve the goal of carbon emission reduction. In this paper, firstly, the reward and punishment ladder-type carbon trading model is constructed, and the impact of the carbon trading mechanisms on the carbon emission sources in the power system is comparatively analyzed. Secondly, in order to achieve a reasonable allocation of carbon resources in IPGES, a bi-level optimization model is established while taking into account the economics of dispatching and the requirements of carbon emission reduction. Among them, the outer layer is the optimal carbon price solution model considering carbon trading; in the inner layer, considering the power system constraints, natural gas system constraints, and coupling element operation constraints, a stochastic optimal dispatching model of IPGES based on scenario analysis is established. Scenario generation and reduction methods are used to deal with the uncertainty of wind power, and the inner model is processed as a mixed integer linear programming problem. In the MATLAB environment, program the dichotomy and call the Gurobi optimization solver to complete the interactive solution of the inner and outer models. Finally, case studies that use an integrated IEEE 39-bus power system and Belgian 20-node gas system demonstrate the effectiveness and scalability of the proposed model and optimization method.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8216
Author(s):  
Pablo Benalcazar ◽  
Przemysław Kaszyński ◽  
Jacek Kamiński

In the power and heat sectors, the uncertainty of energy and carbon prices plays a decisive role in the rationale for decommissioning/repurposing coal-fired CHP (combined heat and power) systems and on investment decisions of energy storage units. Therefore, there is a growing need for advanced methods that incorporate the stochastic disturbances of energy and carbon emission prices into the optimization process of an energy system. In this context, this paper proposes an integrated method for investigating the effects of uncertain energy and carbon prices on the operational patterns and financial results of CHP systems with thermal energy storage units. The approach combines mathematical programming and Monte Carlo simulation. The computational process generates feasible solutions for profit maximization considering the technical constraints of the CHP system and the variation of energy and carbon emission prices. Four scenarios are established to compare the operational patterns and economic performance of a CHP system in 2020 and 2030. Results show that in 2020, there is an 80% probability that the system’s annual profit will be less than or equal to €30.98 M. However, at the same probability level, the annual profit in 2030 could fall below €11.88 M. Furthermore, the scenarios indicate that the incorporation of a thermal energy storage unit leads to higher expected profits (€0.74 M in 2020 and €0.71 M in 2030). This research shows that coal-fired CHP plant operators will face costly risks and potentially greater challenges in the upcoming years with the increasing regulatory and financial pressure on CO2 emissions and the EU’s plan of phasing out fossil fuels from electricity and heat generation.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2677
Author(s):  
Feng Li ◽  
Shirong Lu ◽  
Chunwei Cao ◽  
Jiang Feng

To “bring carbon emissions to a peak by 2030 and to be carbon-neutral by 2060”, the role of renewable energy consumption and carbon emission trading are promoted. As an important energy consumer of regional energy system, it is necessary for integrated energy system to ensure the low-carbon economic operation of the system. Combined with the responsibility of renewable energy consumption, green certificate trading mechanism, carbon emission rights trading, and China Certified Emission Reduction (CCER), a regional integrated energy system operation optimization model was proposed. The model aims to minimize the total cost of the system, which included with electric bus, thermal bus, and cold bus. Setting different scenarios for the given example, the results show that the optimized model could effectively reduce the operating costs of the system. Moreover, the results also provide an effective reference for the system’s economic and low-carbon operation.


2019 ◽  
Vol 11 (7) ◽  
pp. 1930 ◽  
Author(s):  
Ying Zhu ◽  
Quanling Tong ◽  
Xueting Zeng ◽  
Xiaxia Yan ◽  
Yongping Li ◽  
...  

Nowadays, rural power supply in China plays an important role in restricting the economic development and improvement of residential living standards. In this study, an interval full-infinite programming rural energy model (IFIP-REM) was developed for supporting distributed energy system (DES) optimal design under uncertainties in rural areas. By affecting the upper and lower bounds of the interval by complex and variable external conditions, IFIP-REM could simulate the influence of external systems. To validate the model, a real case study of DES optimal design in Guanzhong, a rural area of China, was tested and aimed to minimize system cost and constraints of resources, energy supply reliability, and carbon emission mitigation. The data revealed generation of reasonable optimization schemes to obtain interval solutions of IFIP-REM. Compared to centralized energy system (CES), DES reduced electricity purchasing of the municipal grid by 47.5% and extended carbon emission of both upper and lower bounds to [17.13, 44.51] % and [12.42, 36.02] %, respectively. Overall, the proposed model could help managers make decisions of DES optimal design by coordinating conflicts among economic cost, system efficiency, and carbon emission mitigation.


2019 ◽  
Vol 11 (9) ◽  
pp. 2502 ◽  
Author(s):  
Shuxia Yang ◽  
Di Zhang ◽  
Dongyan Li

This paper takes the regional energy internet as the research object, and combines the power system, primary energy system, transportation system, and thermal energy system to give the system boundary. First, the mathematical decomposition method and the logical integration method were combined to decompose the total low-carbon capability into seven single low-carbon capabilities. On the basis of the mechanism of carbon emission reduction, a comprehensive calculation model for CO2 emissions reduction of the energy internet was then established. Finally, taking the Yanqing Energy Internet Demonstration Zone in China as an example, it was calculated that the model could reduce CO2 emissions by 14,093.19 tons in 2025. The results show that the methods adopted in this paper avoided the overlap calculation reasonably well; the comprehensive calculation model of CO2 emissions reduction has strong versatility, and can quantitatively calculate the carbon emission reduction amount for any completed or planned energy internet. Among the seven low-carbon capabilities, “replacement of gasoline with electricity” had the highest contribution rate, with a value of 42.62%, followed by “renewable energy substitution” (37.13%). The innovations in this paper include: (1) The problem of reasonable splitting of the overlapping parts in carbon emission reduction calculations being solved. (2) The first comprehensive calculation model of CO2 emission reduction on the energy internet being established. (3) The contribution of the seven low-carbon capabilities of the energy internet to total emissions reduction being clarified.


2021 ◽  
Vol 271 ◽  
pp. 01006
Author(s):  
Liu Xinyu ◽  
Liu Na

As a market trading mechanism, carbon emission trading plays an important role in effectively reducing the overall cost of carbon emission and achieving the "3060" carbon target.At present, the carbon emission trading mechanism has played a role in the world and become an effective means to promote climate governance.China's energy system has always been a high-carbon, high-coal system. The burning of fossil fuels releases a large amount of CO2, which is the main source of carbon emissions.With the improvement of people's living standards, electricity consumption continues to increase. If we want to achieve a substantial reduction in China's carbon emissions, we need to change the structure of the power generation system, which is dominated by coal.


Sign in / Sign up

Export Citation Format

Share Document