New analytical assessment for fast and complete pre-fault restoration of grid-connected FSWTs with fuzzy-logic pitch-angle controller

Author(s):  
Ahmed A. Salem ◽  
Azza A. ElDesouky ◽  
Ali H. Kasem Alaboudy
2015 ◽  
Vol 64 (2) ◽  
pp. 291-314 ◽  
Author(s):  
Maziar Izadbakhsh ◽  
Alireza Rezvani ◽  
Majid Gandomkar

Abstract In this paper, dynamic response improvement of the grid connected hybrid system comprising of the wind power generation system (WPGS) and the photovoltaic (PV) are investigated under some critical circumstances. In order to maximize the output of solar arrays, a maximum power point tracking (MPPT) technique is presented. In this paper, an intelligent control technique using the artificial neural network (ANN) and the genetic algorithm (GA) are proposed to control the MPPT for a PV system under varying irradiation and temperature conditions. The ANN-GA control method is compared with the perturb and observe (P&O), the incremental conductance (IC) and the fuzzy logic methods. In other words, the data is optimized by GA and then, these optimum values are used in ANN. The results are indicated the ANN-GA is better and more reliable method in comparison with the conventional algorithms. The allocation of a pitch angle strategy based on the fuzzy logic controller (FLC) and comparison with conventional PI controller in high rated wind speed areas are carried out. Moreover, the pitch angle based on FLC with the wind speed and active power as the inputs can have faster response that lead to smoother power curves, improving the dynamic performance of the wind turbine and prevent the mechanical fatigues of the generator


2021 ◽  
pp. 014459872110417
Author(s):  
Ya-Jun Fan ◽  
Hai-tong Xu ◽  
Zhao-Yu He

Wind energy has been developed and is widely used as a clean and renewable form of energy. Among the existing variety of wind turbines, variable-speed variable-pitch wind turbines have become popular owing to their variable output power capability. In this study, a hybrid control strategy is proposed to implement pitch angle control. A new nonlinear hybrid control approach based on the Adaptive Neuro-Fuzzy Inference System and fuzzy logic control is proposed to regulate the pitch angle and maintain the captured mechanical energy at the rated value. In the controller, the reference value of the pitch angle is predicted by the Adaptive Neuro-Fuzzy Inference System according to the wind speed and the blade tip speed ratio. A proposed fuzzy logic controller provides feedback based on the captured power to modify the pitch angle in real time. The effectiveness of the proposed hybrid pitch angle control method was verified on a 5 MW offshore wind turbine under two different wind conditions using MATLAB/Simulink. The simulation results showed that fluctuations in rotor speed were dramatically mitigated, and the captured mechanical power was always near the rated value as compared with the performance when using the Adaptive Neuro-Fuzzy Inference System alone. The variation rate of power was 0.18% when the proposed controller was employed, whereas it was 2.93% when only an Adaptive Neuro-Fuzzy Inference System was used.


2017 ◽  
Vol 111 ◽  
pp. 708-717 ◽  
Author(s):  
Zafer Civelek ◽  
Murat Lüy ◽  
Ertuğrul Çam ◽  
Hayati Mamur

Sign in / Sign up

Export Citation Format

Share Document