Diagnosis of small-sample measured electromagnetic transients in power system using DRN-LSTM and data augmentation

Author(s):  
Wenxia Sima ◽  
Han Zhang ◽  
Ming Yang ◽  
Xiuhua Li
Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2399 ◽  
Author(s):  
Cunwei Sun ◽  
Yuxin Yang ◽  
Chang Wen ◽  
Kai Xie ◽  
Fangqing Wen

The convolutional neural network (CNN) has made great strides in the area of voiceprint recognition; but it needs a huge number of data samples to train a deep neural network. In practice, it is too difficult to get a large number of training samples, and it cannot achieve a better convergence state due to the limited dataset. In order to solve this question, a new method using a deep migration hybrid model is put forward, which makes it easier to realize voiceprint recognition for small samples. Firstly, it uses Transfer Learning to transfer the trained network from the big sample voiceprint dataset to our limited voiceprint dataset for the further training. Fully-connected layers of a pre-training model are replaced by restricted Boltzmann machine layers. Secondly, the approach of Data Augmentation is adopted to increase the number of voiceprint datasets. Finally, we introduce fast batch normalization algorithms to improve the speed of the network convergence and shorten the training time. Our new voiceprint recognition approach uses the TLCNN-RBM (convolutional neural network mixed restricted Boltzmann machine based on transfer learning) model, which is the deep migration hybrid model that is used to achieve an average accuracy of over 97%, which is higher than that when using either CNN or the TL-CNN network (convolutional neural network based on transfer learning). Thus, an effective method for a small sample of voiceprint recognition has been provided.


2019 ◽  
Vol 128 (8-9) ◽  
pp. 2126-2145 ◽  
Author(s):  
Zhen-Hua Feng ◽  
Josef Kittler ◽  
Muhammad Awais ◽  
Xiao-Jun Wu

AbstractEfficient and robust facial landmark localisation is crucial for the deployment of real-time face analysis systems. This paper presents a new loss function, namely Rectified Wing (RWing) loss, for regression-based facial landmark localisation with Convolutional Neural Networks (CNNs). We first systemically analyse different loss functions, including L2, L1 and smooth L1. The analysis suggests that the training of a network should pay more attention to small-medium errors. Motivated by this finding, we design a piece-wise loss that amplifies the impact of the samples with small-medium errors. Besides, we rectify the loss function for very small errors to mitigate the impact of inaccuracy of manual annotation. The use of our RWing loss boosts the performance significantly for regression-based CNNs in facial landmarking, especially for lightweight network architectures. To address the problem of under-representation of samples with large pose variations, we propose a simple but effective boosting strategy, referred to as pose-based data balancing. In particular, we deal with the data imbalance problem by duplicating the minority training samples and perturbing them by injecting random image rotation, bounding box translation and other data augmentation strategies. Last, the proposed approach is extended to create a coarse-to-fine framework for robust and efficient landmark localisation. Moreover, the proposed coarse-to-fine framework is able to deal with the small sample size problem effectively. The experimental results obtained on several well-known benchmarking datasets demonstrate the merits of our RWing loss and prove the superiority of the proposed method over the state-of-the-art approaches.


2020 ◽  
Author(s):  
Rija Tonny Christian Ramarolahy ◽  
Esther Opoku Gyasi ◽  
Alessandro Crimi

Abstract Background: Recent studies use machine-learning techniques to detect parasites in microscopy images automatically. However, these tools are trained and tested in specific datasets. Indeed, even if over-fitting is avoided during the improvements of computer vision applications, large differences are expected. Differences might be related to settings of camera (exposure, white balance settings, etc) and different blood film slides preparation. Moreover, generative adversial networks offer new opportunities in microscopy: data homogenization, and increase of images in case of imbalanced or small sample size. Methods: Taking into consideration all those aspects, in this paper, we describe a more complete view including both detection and generating synthetic images: i) an automated detection used to detect malaria parasites on stained blood smear images using machine learning techniques testing several datasets. ii) investigate transfer learning and further testing in different unseen datasets having different staining, microscope, resolution, etc. iii) a generative approach to create synthetic images which can deceive experts. Results: The tested architecture achieved 0.98 and 0.95 area under the ROC curve in classifying images with respectively thin and thick smear. Moreover, the generated images proved to be very similar to the original and difficult to be distinguished by an expert microscopist, which identified correcly the real data for one dataset but had 50\% misclassification for another dataset of images. Conclusion: The proposed deep-learning architecture performed well on a classification task for malaria parasites classification. The automated detection for malaria can help the technician to reduce their work and do not need any presence of experts. Moreover, generative networks can also be applied to blood smear images to generate useful images for microscopists. Opening new ways to data augmentation, translation and homogenization.


2019 ◽  
Vol 8 (6) ◽  
pp. 276 ◽  
Author(s):  
Yiming Yan ◽  
Zhichao Tan ◽  
Nan Su

In this paper, we propose a data augmentation method for ship detection. Inshore ship detection using optical remote sensing imaging is a challenging task owing to an insufficient number of training samples. Although the multilayered neural network method has achieved excellent results in recent research, a large number of training samples is indispensable to guarantee the accuracy and robustness of ship detection. The majority of researchers adopt such strategies as clipping, scaling, color transformation, and flipping to enhance the samples. Nevertheless, these methods do not essentially increase the quality of the dataset. A novel data augmentation strategy was thus proposed in this study by using simulated remote sensing ship images to augment the positive training samples. The simulated images are generated by true background images and three-dimensional models on the same scale as real ships. A faster region-based convolutional neural network (Faster R-CNN) based on Res101netwok was trained by the dataset, which is composed of both simulated and true images. A series of experiments is designed under small sample conditions; the experimental results show that better detection is obtained with our data augmentation strategy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao Ke ◽  
Pengqiang Du

Automatic identification for vehicles is an important topic in the field of Intelligent Transportation Systems (ITS), and the vehicle logo is one of the most important characteristics of a vehicle. Therefore, vehicle logo detection and recognition are important research topics. Because of the problems that the area of a vehicle logo is too small to be detected and the dataset is too small to train for complex scenes, considering the speed of recognition and the robustness to complex scenes, we use deep learning methods which are based on data optimization for vehicle logo in complex scenes. We propose three augmentation strategies for vehicle logo data: cross-sliding segmentation method, small frame method, and Gaussian Distribution Segmentation method. For the problem of small sample size, we use cross-sliding segmentation method, which can effectively increase the amount of data without changing the aspect ratio of the original vehicle logo image. To expand the area of the logos in the images, we develop the small frame method which improves the detection results of the small area vehicle logos. In order to enrich the position diversity of vehicle logo in the image, we propose Gaussian Distribution Segmentation method, and the result shows that this method is very effective. The F1 value of our method in the YOLO framework is 0.7765, and the precision is greatly improved to 0.9295. In the Faster R-CNN framework, the F1 value of our method is 0.7799, which is also better than before. The results of experiments show that the above optimization methods can better represent the features of the vehicle logos than the traditional method, and the experimental results have been improved.


Sign in / Sign up

Export Citation Format

Share Document