scholarly journals Resolvent-based design and experimental testing of porous materials for passive turbulence control

2020 ◽  
Vol 86 ◽  
pp. 108722
Author(s):  
Andrew Chavarin ◽  
Christoph Efstathiou ◽  
Shilpa Vijay ◽  
Mitul Luhar
Author(s):  
Hongrae Park ◽  
Michael M. Bernitsas ◽  
Che-Chun Chang

Passive turbulence control (PTC) in the form of two straight roughness strips with variable width, and thickness about equal to the boundary layer thickness, is used to modify the flow-induced motions (FIM) of a rigid circular cylinder. The cylinder is supported by two end-springs and the flow is in the TrSL3, high-lift, regime. The PTC-to-FIM Map, developed in previous work, revealed zones of weak suppression, strong suppression, hard galloping, and soft galloping. In this paper the sensitivity of the PTC-to-FIM Map to: (a) the width of PTC covering, (b) PTC covering a single or multiple zones, (c) PTC being straight or staggered is studied experimentally. Experiments are conducted in the Low Turbulence Free Surface Water Channel of the University of Michigan. Fixed parameters are: cylinder diameter D = 8.89cm, m* = 1.725, spring stiffness K = 763N/m, aspect ratio l/D = 10.29, and damping ratio ζ = 0.019. Variable parameters are: circumferential PTC location αPTC ∈ [0°−180°], Reynolds number Re ∈ [30,000–120,000], flow velocity U ∈ [0.36m/s–1.45m/s]. Measured quantities are: amplitude ratio A/D, frequency ratio fosc/fn,w, and synchronization range. As long as the roughness distribution is limited to remain within a zone, the width of the strips does not affect the FIM response. When multiple zones are covered, the strong suppression zone dominates the FIM.


Author(s):  
Che-Chun Chang ◽  
Michael M. Bernitsas

Passive turbulence control (PTC) in the form of selectively applied surface roughness is used on a rigid circular cylinder supported by two end-springs in transverse steady flow. The flow-induced motions are enhanced dramatically reaching the limits of the experimental facility and motion mechanism at amplitude to diameter ratio A/D ≅ 3. In comparison to a smooth cylinder, in the fully turbulent shear layer flow regime at Reynolds number on the order of 100,000, PTC initiates VIV earlier at reduce velocity U* ≅ 4, reduces VIV amplitude depending on damping, and initiates galloping at U* ≅ 10 rather than 20. Thus, back-to-back VIV and galloping are achieved expanding the synchronization range of Flow Induced Motion (FIM) beyond U* ≅ 15 and the capabilities of the experimental set-up. The harnessed horizontal hydrokinetic power increased by a factor of four due to increased velocities in the synchronization range without any adjustment of the motion mechanism particulars.


Author(s):  
Omer Kemal Kinaci ◽  
Sami Lakka ◽  
Hai Sun ◽  
Ethan Fassezke ◽  
Michael M. Bernitsas

Vortex-induced vibrations (VIVs) are highly nonlinear and it is hard to approach the problem analytically or computationally. Experimental investigation is therefore essential to address the problem and reveal some physical aspects of VIV. Although computational fluid dynamics (CFDs) offers powerful methods to generate solutions, it cannot replace experiments as yet. When used as a supplement to experiments, however, CFD can be an invaluable tool to explore some underlying issues associated with such complicated flows that could otherwise be impossible or very expensive to visualize or measure experimentally. In this paper, VIVs and galloping of a cylinder with selectively distributed surface roughness—termed passive turbulence control (PTC)—are investigated experimentally and computationally. The computational approach is first validated with benchmark experiments on smooth cylinders available in the literature. Then, experiments conducted in the Marine Renewable Energy Laboratory (MRELab) of the University of Michigan are replicated computationally to visualize the flow and understand the effects of thickness and width of roughness strips placed selectively on the cylinder. The major outcomes of this work are: (a) Thicker PTC initiates earlier galloping but wider PTC does not have a major impact on the response of the cylinder and (b) The amplitude response is restricted in VIV due to the dead fluid zone attached to the cylinder, which is not observed in galloping.


Author(s):  
Wanhai Xu ◽  
Chunning Ji ◽  
Hai Sun ◽  
Wenjun Ding ◽  
Michael M. Bernitsas

Flow-induced vibration (FIV), primarily vortex-induced vibrations (VIV) and galloping have been used effectively to convert hydrokinetic energy to electricity in model-tests and field-tests by the Marine Renewable Energy Laboratory (MRELab) of the University of Michigan. The developed device, called VIVACE (VIV for Aquatic Clean Energy), harnesses hydrokinetic energy from river and ocean flows. One of the methods used to improve its efficiency of harnessed power efficiency is Passive Turbulence Control (PTC). It is a turbulence stimulation method that has been used to alter FIV of a cylinder in a steady flow. FIV of elastically mounted cylinders with PTC differs from the oscillation of smooth cylinders in a similar configuration. Additional investigation of the FIV of two elastically mounted circular cylinders in staggered arrangement with a low mass ratio in the TrSL3 flow-regime is required and is contributed by this paper. A series of experimental studies on FIV of two PTC cylinders in staggered arrangement were carried out in the recirculating water channel of MRELab. The two cylinders were allowed to oscillate in the transverse direction to the oncoming fluid flow. Cylinders tested have, diameter D = 8.89cm, length L = 0.895m and mass ratio m* = 1.343. The Reynolds number was in the range of 2.5×104<Re<1.2×105, which is a subset of the TrSL3 flow-regime. The center-to-center longitudinal and transverse spacing distances were T/D = 2.57 and S/D = 1.0, respectively. The spring stiffness values were in the range of 400<K<1200N/m. The values of harnessing damping ratio tested were ζharness = 0.04, 0.12, 0.24. For the values tested, the experimental results indicate that the response of the 1st cylinder is similar to a single cylinder; however more complicated vibration of the 2nd cylinder is observed. In addition, the oscillation system of two cylinders with stiffer spring and higher ζharness could initiate total power harness at a larger flow velocity and harness much higher power. These findings are very meaningful and important for hydrokinetic energy conversion.


Author(s):  
Wei Wu ◽  
Michael M. Bernitsas ◽  
Kevin Maki

Two-dimensional RANS equations with the Spalart-Allmaras turbulence model are used to simulate the flow and body kinematics of a rigid circular cylinder mounted on springs, transversely to a steady uniform flow in the high-lift, TrSL3 regime with 35,000<Re<130,000. Passive Turbulence Control (PTC) in the form of selectively distributed surface roughness is used to alter the cylinder Flow Induced Motion (FIM). Simulation is performed by using a solver based on the open source CFD tool OpenFOAM, which solves continuum mechanics problems with a finite volume discretization method. Roughness parameters of PTC are simulated modeling tests conducted in the Marine Renewable Energy Lab (MRELab) of the University of Michigan. The numerical tool is first tested on smooth cylinder in VIV and results are compared with available experimental measurements and RANS simulations. For the cylinder with PTC cases, the sandpaper grit (k) on the cylinder wall is modeled as a rough-wall boundary condition. Two sets of cases with different system parameters (spring constant, damping) are simulated and the results are compared with experimental data measured in the MRELab. The amplitude-ratio curve shows clearly three different branches, including the VIV initial and upper branches and a galloping branch, similar to those observed experimentally. Frequency ratio, vortex patterns, transitional behavior, and lift are also predicted well for PTC cylinders at such high Reynolds numbers.


Author(s):  
Eun Soo Kim ◽  
Michael M. Bernitsas ◽  
R. Ajith Kumar

The VIVACE converter was introduced at OMAE2006 as a single, smooth, circular-cylinder module. The hydrodynamics of VIVACE is being improved continuously to achieve higher density in harnessed hydrokinetic power. Intercylinder spacing and passive turbulence control (PTC) through selectively located roughness are effective tools in enhancement of flow induced motions (FIMs) under high damping for power harnessing. Single cylinders harness energy at high density even in 1 knot currents. For downstream cylinders, questions were raised on energy availability and sustainability of high-amplitude FIM. Through PTC and intercylinder spacing, strongly synergetic FIMs of 2/3/4 cylinders are achieved. Two-cylinder smooth/PTC, and three/four-cylinder PTC systems are tested experimentally. Using the “PTC-to-FIM” map developed in previous work at the Marine Renewable Energy Laboratory (MRELab), PTC is applied and cylinder response is measured for inflow center-to-center distance 2D-5D (D = diameter), transverse center-to-center distance 0.5–1.5 D, Re ε [28,000–120,000], m* ε [1.677–1.690], U ε [0.36–1.45 m/s], aspect ratio l/D = 10.29, and m*ζ ε [0.0283–0.0346]. All experiments are conducted in the low turbulence free surface water (LTFSW) channel of MRELab. Amplitude spectra and broad field-of-view (FOV) visualization help reveal complex flow structures and cylinder interference undergoing VIV, interference/ proximity/wake/soft/hard galloping. FIM amplitudes of 2.2–2.8D are achieved for all cylinders in steady flow for all parameter ranges tested.


Sign in / Sign up

Export Citation Format

Share Document