Heat transfer in a rarefied gas between profiled surfaces moving relative to each other

Author(s):  
Artem Yakunchikov
Keyword(s):  
Author(s):  
Dilesh Maharjan ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner ◽  
Stefan K. Stefanov

During vacuum drying of used nuclear fuel (UNF) canisters, helium pressure is reduced to as low as 67 Pa to promote evaporation and removal of remaining water after draining process. At such low pressure, and considering the dimensions of the system, helium is mildly rarefied, which induces a thermal-resistance temperature-jump at gas–solid interfaces that contributes to the increase of cladding temperature. It is important to maintain the temperature of the cladding below roughly 400 °C to avoid radial hydride formation, which may cause cladding embrittlement during transportation and long-term storage. Direct Simulation Monte Carlo (DSMC) method is an accurate method to predict heat transfer and temperature under rarefied condition. However, it is not convenient for complex geometry like a UNF canister. Computational Fluid Dynamics (CFD) simulations are more convenient to apply but their accuracy for rarefied condition are not well established. This work seeks to validate the use of CFD simulations to model heat transfer through rarefied gas in simple two-dimensional geometry by comparing the results to the more accurate DSMC method. The geometry consists of a circular fuel rod centered inside a square cross-section enclosure filled with rarefied helium. The validated CFD model will be used later to accurately estimate the temperature of an UNF canister subjected to vacuum drying condition.


2010 ◽  
Vol 81 (1) ◽  
Author(s):  
W. D. Zhou ◽  
B. Liu ◽  
S. K. Yu ◽  
W. Hua
Keyword(s):  

2013 ◽  
Vol 13 (5) ◽  
pp. 1330-1356 ◽  
Author(s):  
G. H. Tang ◽  
G. X. Zhai ◽  
W. Q. Tao ◽  
X. J. Gu ◽  
D. R. Emerson

AbstractGases in microfluidic structures or devices are often in a non-equilibrium state. The conventional thermodynamic models for fluids and heat transfer break down and the Navier-Stokes-Fourier equations are no longer accurate or valid. In this paper, the extended thermodynamic approach is employed to study the rarefied gas flow in microstructures, including the heat transfer between a parallel channel andpressure-driven Poiseuille flows through a parallel microchannel andcircular microtube. The gas flow characteristics are studied and it is shown that the heat transfer in the non-equilibrium state no longer obeys the Fourier gradient transport law. In addition, the bimodal distribution of streamwise and spanwise velocity and temperature through a long circular microtube is captured for the first time.


1980 ◽  
Vol 15 (1) ◽  
pp. 165-168 ◽  
Author(s):  
O. G. Fridlender
Keyword(s):  

2001 ◽  
Author(s):  
Hong Xue ◽  
Ling Xie ◽  
S. K. Chou

Abstract Gaseous flow encountered in micro/nano electromechanical systems experiences change in Kn number across a wide range of flow regime due to variation in characteristic length in the system and significant compressibility of the rarefied gas. In this study, we attempt to develop a general, physics-based model to predict the flow and heat transfer in the slip and transition regimes. Such an extension is constructed on the fact that Chapman-Enskog’s approximation of the Boltzmann equation can be revised using a function of Kn number as a perturbation. Velocity slip and temperature jump at the solid boundaries are modified accordingly. Rarefaction effects on dynamic viscosity and thermal conductivity are considered. As a first step to evaluate the model, it is applied to the simplest shear-driven flow, micro Couette flow. Compared with the results of DSMC, satisfactory agreement has been achieved in a wide range of Kn and Ma numbers.


Sign in / Sign up

Export Citation Format

Share Document