Dynamics of liquid film rupture under local heating

Author(s):  
D. Zaitsev ◽  
D. Kochkin ◽  
O. Kabov
Author(s):  
Youjia Zhang ◽  
Weimin Ma ◽  
Shengjie Gong

This study is concerned with liquid film dynamics and stability of annular flow, which plays an important role in understanding film rupture and dryout in boiling heat transfer. The research work starts from designing and making a test facility which enables the visualization and measurement of liquid film dynamics. A confocal optical sensor is applied to track the evolution of film thickness. A horizontal rectangular channel made of glass is used as the test section. Deionized water and air are supplied into that channel in such a way that an initial stratified flow forms, with the liquid film on the bottom wall. The present study is focused on characterization of liquid film profile and dynamics in term of interfacial wave and shear force induced film rupture under adiabatic condition. Based on the experimental data and analysis, it is found that given a constant water flowrate, the average thickness of water film decreases with increasing air flowrate, while the interfacial wave of the two-phase flow is intensified. As the air flowrate reaches a critical value, a localized rupture of the water film occurs.


Author(s):  
Bo Wang ◽  
Bowen Chen ◽  
Bingzheng Ke ◽  
Ru Li ◽  
Gongqing Wang ◽  
...  

Abstract Corrugated plate dryer is a extremely vital equipment for steam-water separation in the fields of heat transfer and nuclear engineering. The corrugated plate is also a commonly used steam-water separator in steam generators in nuclear power plants. It is meaningful to study the breakdown characteristics and mechanism of the water film on corrugated plate wall. Water film thickness of steady flow is measured based on plane laser induced fluorescence (PLIF) technique and time series and its fitted equation of water film thickness are obtained, respectively. Besides, fluctuation characteristics of water film are analyzed by probability density function (PDF). Based on the dimensionless approach, the water film breakdown model at the corner of the corrugated plate is established. And the calculation equation of the relative position of the water film breakdown at the corner is deprived. The specific conclusions are as follows. The theoretical equation agrees well with the relative position of the water film breakdown at the corrugated plate corner. The evolution of the surface wave of water film is carried out in time and space. The PDF curve have no significant peak characteristics. Therefore, the spectrum has no characteristic frequency, that is, the water film has multi-frequency characteristics. Gravity of water film can be ignored in the water film model. The thickness sequences for falling film is measured and fitted. The two-dimensional model of water film breakdown at the corner is set up. The equation for the film thickness when the water film is just ruptured is obtained. Relative position of the water film rupture at the corner of the corrugated plate is theoretically related only to the structural parameters of the corrugated plate, the parameters of the gas phase and the liquid phase, and the Reynolds number of the liquid film. However, in the low Reynolds number region, the airflow velocity is extremely large, which causes certain fluctuations and nonlinear characteristics of the water film boundary position. Therefore, the theoretical formula is not particularly good at predicting the relative position of the breakdown in this region. I think that this nonlinear feature has obvious chaotic characteristics. The study of the chaotic characteristics generated by shearing the liquid film by high velocity flow airflow at the corner of the corrugated plate may become a prospect for future research.


Author(s):  
Elizaveta Ya. Gatapova ◽  
Vladimir V. Kuznetsov ◽  
Oleg A. Kabov ◽  
Jean-Claude Legros

In our previous investigations the formation of liquid bump of locally heated laminar liquid film with co-current gas flow was obtained [1,2]. The evaporation of liquid was left out of account. Heat transfer to the gas phase was approximately specified by a constant Biot number [2,3]. The aim of this work is an investigation of the evaporation effect, the hydrodynamics and the heat transfer of liquid film flow in a channel 0.2–1 mm height. The 2-D model of locally heated liquid film moving under gravity and the action of co-current gas flow with low viscosity in a channel are considered. The channel can be inclined at an angle with respect to horizon. It is supposed that the height of the channel is much less than its width. Surface tension is assumed to depend on temperature. The velocity profiles for gas and liquid regions are found from problem of joint motion of isothermal non-deformable liquid film and gas flow. Using the findings the joint solution of heat transfer and diffusion problem with corresponding boundary condition is calculated. Having the temperature field in the whole of liquid and gas flow region we find a local heat transfer coefficient on the gas-liquid interface and Biot number as a function of flow parameters and spatial variables.


Author(s):  
Е.А. Чиннов

The data of thermocapillary structures formation and breakdown of the heated liquid film flowing down on a vertical surface with the Reynolds number varied from 0.1 up to 500 are analyzed. It is shown that the interaction of waves with thermocapillary structures type A leads to an increase in critical heat flux, corresponding to the liquid film rupture, compared with literature data (regime B).


2016 ◽  
Vol 33 (2) ◽  
pp. 249-256
Author(s):  
P.-J. Cheng ◽  
C.-K. Chen ◽  
Y.-C. Wang ◽  
M.-C. Lin ◽  
C.-K. Yang

AbstractThis paper investigates the rupture problem of a thin micropolar liquid film under a magnetic field on a horizontal plate, using long-wave perturbation to resolve nonlinear evolution equations with a free film interface. The governing equation is resolved using a finite difference method as part of an initial value problem for spatial periodic boundary conditions. The effect of a micropolar liquid under a magnetic field on the nonlinear rupture mechanism is studied in terms of the micropolar parameter, R, the Hartmann constant, m and the initial disturbance amplitude, H0. Modeling results indicate that the R, m and H0 parameters strongly affect the film flow. Enhancing the micropolar and magnetic effects is found to delay the rupture time. In addition, the results show that the film rupture time increases as the values of initial disturbance magnitude decrease. The micropolar and magnetic parameters indeed play a significant role in the film flow on a horizontal plate. Moreover, the optimum conditions can be found to alter stability of the film flow by controlling the applied magnetic field.


2012 ◽  
Vol 2012.50 (0) ◽  
pp. 111601-111602
Author(s):  
Takamichi HATANAKA ◽  
Fumihiro SAEKI ◽  
Hiroshige MATSUOKA ◽  
Shigehisa FUKUI

Sign in / Sign up

Export Citation Format

Share Document