Experimental and kinetic study of laminar flame characteristics of H2/O2/diluent flame under elevated pressure

2020 ◽  
Vol 45 (56) ◽  
pp. 32508-32520
Author(s):  
Xin Lu ◽  
Erjiang Hu ◽  
Sage Kokjohn ◽  
Qunfei Gao ◽  
Geyuan Yin ◽  
...  
2022 ◽  
Vol 238 ◽  
pp. 111915
Author(s):  
Geyuan Yin ◽  
Jinglun Li ◽  
Meng Zhou ◽  
Jiaxing Li ◽  
Chaojun Wang ◽  
...  

2021 ◽  
Vol 35 (17) ◽  
pp. 14063-14076
Author(s):  
Farha Khan ◽  
Ayman M. Elbaz ◽  
Jihad Badra ◽  
Vincent Costanzo ◽  
William L. Roberts

2021 ◽  
Author(s):  
Mingshan Sun ◽  
Zhiwen Gan

Abstract The hydrogen addition is a potential way to reduce the soot emission of aviation kerosene. The current study analyzed the effect of hydrogen addition on aviation kerosene (Jet A1) soot formation in a laminar flame at elevated pressure to obtain a fundamental understanding of the reduced soot formation by hydrogen addition. The soot formation of flame was simulated by CoFlame code. The soot formation of kerosene-nitrogen-air, (kerosene + replaced hydrogen addition)-nitrogen-air, (kerosene + direct hydrogen addition)-nitrogen-air and (kerosene + direct nitrogen addition)-nitrogen-air laminar flames were simulated. The calculated pressure includes 1, 2 and 5 atm. The hydrogen addition increases the peak temperature of Jet A1 flame and extends the height of flame. The hydrogen addition suppresses the soot precursor formation of Jet A1 by physical dilution effect and chemical inhibition effect, which weaken the poly-aromatic hydrocarbon (PAH) condensation process and reduce the soot formation. The elevated pressure significantly accelerates the soot precursor formation and increases the soot formation in flame. Meanwhile, the ratio of reduced soot volume fraction to base soot volume fraction by hydrogen addition decreases with the increase of pressure, indicating that the elevated pressure weakens the suppression effect of hydrogen addition on soot formation in Jet A1 flame.


Fuel ◽  
2016 ◽  
Vol 185 ◽  
pp. 916-924 ◽  
Author(s):  
Xin Meng ◽  
Erjiang Hu ◽  
Xiaotian Li ◽  
Zuohua Huang
Keyword(s):  

2012 ◽  
Vol 148 (1) ◽  
pp. 40-47
Author(s):  
Stanisław SZWAJA ◽  
Wojciech TUTAK ◽  
Karol GRAB-ROGALIŃSKI ◽  
Arkadiusz JAMROZIK ◽  
Arkadiusz KOCISZEWSKI

Results from tests conducted in several RTD centers lead to conclusion that biogas as a potential fuel for the internal combustion (IC) spark ignited (SI) engine features with its satisfactory combustion predisposition causing smooth engine run without accidental misfiring or knock events. This good predisposition is obtained due to carbon dioxide (CO2) content in the biogas. On the other hand, carbon dioxide as incombustible gas contribute to decrease in the brake power of the biogas fueled engine. To analyze mutual CO2 and CH4 content on biogas burning the combustion parameters as follows: adiabatic combustion temperature, laminar flame speed and ignition delay of biogas with various methane content were determined and presented in the paper. Additionally, these parameters for pure methane were also included in order to make comparison between each other. As computed, ignition delay, which has is strongly correlated with knock resistance, can change several times with temperature increase, but does not change remarkably with increase in methane content. Adiabatic combustion temperature does not also ought to influence on engine performance or increase in engine cooling and exhaust losses due to its insignificant changes. The largest change was observed in laminar flame speed, that can influence on development of the first premixed combustion phase.


Sign in / Sign up

Export Citation Format

Share Document