Optimization of CuO/CdTe/CdS/TiO2 solar cell efficiency: A numerical simulation modeling

Optik ◽  
2022 ◽  
Vol 251 ◽  
pp. 168456
Author(s):  
Avishek Roy ◽  
Abhijit Majumdar
2020 ◽  
Author(s):  
Meah Imtiaz Zulkarnain ◽  
Nazmul Islam

Abstract In this research, a numerical simulation and analysis of the second generation thin film solar cell Copper Indium Gallium diselenide, Cu(In,Ga)Se2 or, CIGS, is conducted in order to optimize its performance and compare among the cells using different materials for buffer and window layers. The one-dimensional solar cell simulation program SCAPS-1D (Solar Cell Capacitance Simulator) is used for the simulation and analysis purpose. The effects of variation of bandgap, concentration and thickness of the p-type CIGS absorber layer on the efficiency of CIGS solar cell are investigated. The change in CIGS solar cell efficiency with change in temperature is studied, too. Two different buffer layers namely CdS and In2S3 are considered for the simulation of the CIGS solar cell. The thickness of the buffer layer, its bandgap and concentration are taken into consideration for optimization. As for the window layer, ZnO and SnO2 are employed for the numerical simulation. The thickness of the window layer is varied and its effect on the efficiency of the solar cell is investigated. The open-circuit voltage, short-circuit current density, fill factor and quantum efficiency of the CIGS solar cell are observed from the SCAPS simulation besides the solar cell efficiency. A comparison among the different CIGS cell structures employing different buffer layers and window layers is performed in terms of efficiency and other essential parameters as mentioned above. The solar cell performances of the structures explored in this work were also put in comparison against some laboratory research cell output. The simulation result shows a possible better performance for all the simulated CIGS cell structures compared to the experimental results. In2S3 appears to increase efficiency and thus poses a great potential for non-toxic CIGS solar cell. Though CIGS absorber layer requires more thickness for desired output, successful application of much thinner SnO2 replacing ZnO buffer layer paves the way to less thicker CIGS thin film solar cell.


2020 ◽  
pp. 114-119

Experimental and theoretical study Porphyrin-grafted ZnO nanowire arrays were investigated for organic/inorganic hybrid solar cell applications. Two types of porphyrin – Tetra (4-carboxyphenyle) TCPP and meso-Tetraphenylporphine (Zinc-TPP)were used to modify the nanowire surfaces. The vertically aligned nanowires with porphyrin modifications were embedded in graphene-enriched poly (3-hexylthiophene) [G-P3HT] for p-n junction nanowire solar cells. Surface grafting of ZnO nanowires was found to improve the solar cell efficiency. There are different effect for the two types of porphyrin as results of Zn existing. Annealing effects on the solar cell performance were investigated by heating the devices up to 225 °C in air. It was found that the cell performance was significantly degraded after annealing. The degradation was attributed to the polymer structural change at high temperature as evidenced by electrochemical impedance spectroscopy measurements.


Author(s):  
Martin A. Green ◽  
Ewan D. Dunlop ◽  
Jochen Hohl‐Ebinger ◽  
Masahiro Yoshita ◽  
Nikos Kopidakis ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
Garner H. Fleming ◽  
Bennett T. Smith ◽  
Matthew G. Dickman ◽  
J. Shawn Addington ◽  
David L. Livingston

Author(s):  
Yacine Kouhlane ◽  
Djoudi Bouhafs ◽  
Abdelkader Guenda ◽  
Nacer-Eddine Demagh ◽  
Assia Guessoum ◽  
...  

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Pascal Kaienburg ◽  
Lisa Krückemeier ◽  
Dana Lübke ◽  
Jenny Nelson ◽  
Uwe Rau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document