Microstructure and mechanical properties of (Nb,W,Ti)(C,N)-Ni solid solution cermets with 6 to 20 wt% Ni

Author(s):  
S.G. Huang ◽  
C. Liu ◽  
B.L. Liu ◽  
J. Vleugels ◽  
J.H. Huang ◽  
...  
2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2011 ◽  
Vol 335-336 ◽  
pp. 783-786
Author(s):  
Fu Yin Han ◽  
Lin Hai Tian ◽  
Hong Xia Wang ◽  
Wei Liang ◽  
Wen Xian Wang

Sr added ignition-proof AZ91D-0.3Be magnesium alloy was prepared. The influence of Sr content on microstructure and mechanical properties of the alloy was studied. Results show that the microstructure of ignition-proof AZ91D-0.3Be magnesium alloy is refined by a small amount of Sr addition. It is due to that the enrichment of a few Sr atoms in solid liquid interface in the process of magnesium alloy solidification inhibits grain growth and accelerates more nucleation. However, with increasing of Sr addition the microstructure is coarsened. By 0.01% Sr addition the tensile strength of as-cast experimental alloy is increased by about 25% and that of both the solid-solution and aged alloy is increased by about 40%. The elongation of as-cast alloy is increased by about 20% and that of solid-solution alloy increased by about 30%.


2007 ◽  
Vol 353-358 ◽  
pp. 718-721
Author(s):  
Ding Fei Zhang ◽  
Rong Shen Liu ◽  
Jian Peng ◽  
Wei Yuang ◽  
Hong Ju Zhang

With different heat treatment, the microstructure and mechanical properties of ZK60 magnesium alloy were investigated. It can be concluded that heat treatment has great effect on mechanical properties of ZK60. With artificial aging after extruding, the precipitation of the second phase from the supersaturated solid solution significantly improved mechanical properties. It can greatly increase yield strength of ZK60 alloy, while the tensile strength has little change. For the combination of solid solution strengthening and age hardening, two opposite factors must be considered. On one hand, the solid solution strengthening and the later precipitation strengthening is good for alloy’s strength; on the other hand, the properties decrease as the grains grew under high temperature for a long time during solution heating.


2010 ◽  
Vol 129-131 ◽  
pp. 886-890
Author(s):  
Da Wei Cui

The influence of solution annealing on the microstructure and mechanical properties of high nitrogen Fe-Cr-Mn-Mo-N austenitic stainless steels prepared by MIM was investigated. The results show that the solution treatment can improve the microstructure and properties of the stainless steels significantly. The sintered specimens before solution annealing consist of γ-austenite and embrittling intergranular Cr2N precipitates, showing a low mechanical property. After solid solution annealing, the specimens reveal a fully austenitic structure without any intergranular nitrides, whose tensile properties are much higher than those without solution annealing, which is attributed to the elimination of the nitride precipitation along the grain boundaries and the greater amount of nitrogen retained in solid solution. A mixed mode of intergranular and dimple fracture happen to the specimens before solid solution treatment, while a completely tough fracture of dimple happen to those after solid solution treatment.


2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.


Sign in / Sign up

Export Citation Format

Share Document