A coupled elastic constitutive model for high porosity sandstone

Author(s):  
Melissa C. Richards ◽  
Kathleen A. Issen ◽  
Mathew D. Ingraham
Author(s):  
Nguyen Van Viet ◽  
Wael Zaki

This work develops a novel torsional theory for a radially functionally graded (FG) porous shape memory alloy (SMA) circular bar. Prior to the theoretical development, the effective three-dimensional (3D) phenomenological constitutive model for SMAs with high porosity is proposed. To help derive successfully the theory, the pure shear-driven material parameters in the effective model are expressed in the cubic polynomial. Subsequently, the torsional theory for radially FG porous SMA circular bar is derived considering the evolution of effective phase evolution in the bar. This phase evolution consideration guarantees the accuracy of the developed theory. Indeed, the soundness of effective constitutive model is confirmed by 3D finite element method (FEM) simulation of porous SMA structure in Abaqus using the well-established ZM’s model for dense SMAs. Specifically, the simulating results in terms of the shear stress-shear strain response obtained from two prediction methods considering a variation of SMA volume fraction and temperature are in good agreement. Furthermore, accuracy of torsional theory is validated by 3D FEM simulation using the 3D effective constitutive model with a good agreement observed. It is found that the superelasticity of the bar can be enhanced by increasing the gradient index and decreasing the temperature and wall thickness.


1994 ◽  
Vol 116 (2) ◽  
pp. 97-103 ◽  
Author(s):  
M. Zaman ◽  
J.-C. Roegiers ◽  
A. Abdulraheem ◽  
M. Azeemuddin

Withdrawal of fluids from hydrocarbon reservoirs results in a decrease in pore pressure which in turn leads to an increase in effective stress on rock matrix. Such a situation may lead to the occurrence of pore collapse in reservoirs having weakly cemented, porous rocks. It is considered to be a potential problem in several producing reservoirs. Numerical simulation of a compacting reservoir due to pore collapse requires an appropriate constitutive model. Consequently, a constitutive model based on the concept of elasto-plasticity using isotropic hardening is developed to predict pre and post-pore collapse behavior of reservoir rocks. An experimental study is carried out on a high-porosity rock susceptible to pore collapse for different stress paths. The developed constitutive model is tested with respect to two different materials exhibiting such behavior. Parameters for the model are evaluated based on the experimental results, highlighting the procedure involved. Further, the data is used to demonstrate the strengths and the weaknesses of the constitutive model. Experimental data for the second material is obtained from literature. Satisfactory agreement is achieved between experimental data and model predictions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhihao He ◽  
Xiangjun Pei ◽  
Shenghua Cui ◽  
Wentai Sun ◽  
Luguang Luo ◽  
...  

Many tunnel engineering accidents are generally caused by water softening tuff of high porosity. Experimental and theoretical analytical methods, including rock ultrasonic testing, X-ray diffraction (XRD), microscopic observation, uniaxial compression test, and scanning electron microscope (SEM), are employed to analyze the physicomechanical properties of tuff in Mila Mountain tunnel under dry and saturated conditions. Then, the mechanism of tuff softening in water is explained. Finally, the statistical damage constitutive model of tuff is established. It was revealed that the tuff compositions were dominated by quartz and clay minerals accounting for more than 90%, and clay minerals, anhydrite, and pyrite were mainly soluble minerals. After being saturated with water, the soluble minerals in the tuff are dissolved, and the porosity and wave velocity are increased; however, the elastic modulus and peak strength are decreased, indicating that water softening was distinct. Water softening after saturation was due to the mineral compositions and microstructure characteristics of tuff in Mila Mountain tunnel; specifically, as the tuff characterized by high porosity was conductive to water absorption, the soluble minerals in the tuff were corroded and swelled by water, dissolving, loosening, and softening the tuff structure; then, its mechanical behavior was degraded. It was demonstrated by the experimental results consistent with theoretical results that the model can be employed to express the constitutive behavior of tuff in Mila Mountain tunnel under dry and saturation conditions. The findings provide insights into macroscale deterioration of tuffs and theoretical knowledge for the tunnel excavation and support of Mila Mountain tunnel.


Author(s):  
H. M. Kerch ◽  
R. A. Gerhardt

Highly porous ceramics are employed in a variety of engineering applications due to their unique mechanical, optical, and electrical characteristics. In order to achieve proper design and function, information about the pore structure must be obtained. Parameters of importance include pore size, pore volume, and size distribution, as well as pore texture and geometry. A quantitative determination of these features for high porosity materials by a microscopic technique is usually not done because artifacts introduced by either the sample preparation method or the image forming process of the microscope make interpretation difficult.Scanning electron microscopy for both fractured and polished surfaces has been utilized extensively for examining pore structures. However, there is uncertainty in distinguishing between topography and pores for the fractured specimen and sample pullout obscures the true morphology for samples that are polished. In addition, very small pores (nm range) cannot be resolved in the S.E.M. On the other hand, T.E.M. has better resolution but the specimen preparation methods involved such as powder dispersion, ion milling, and chemical etching may incur problems ranging from preferential widening of pores to partial or complete destruction of the pore network.


1988 ◽  
Vol 49 (C3) ◽  
pp. C3-489-C3-496
Author(s):  
B. D. COLEMAN ◽  
M. L. HODGDON

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document