Coarse registration of point clouds with low overlap rate on feature regions

Author(s):  
Wenbo Liu ◽  
Wei Sun ◽  
Shuxuan Wang ◽  
Yi Liu
Author(s):  
Jinhu Wang ◽  
Roderik Lindenbergh ◽  
Yueqian Shen ◽  
Massimo Menenti

Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.


2020 ◽  
Vol 9 (4) ◽  
pp. 255
Author(s):  
Hua Liu ◽  
Xiaoming Zhang ◽  
Yuancheng Xu ◽  
Xiaoyong Chen

The degree of automation and efficiency are among the most important factors that influence the availability of Terrestrial light detection and ranging (LiDAR) Scanning (TLS) registration algorithms. This paper proposes an Ortho Projected Feature Images (OPFI) based 4 Degrees of Freedom (DOF) coarse registration method, which is fully automated and with high efficiency, for TLS point clouds acquired using leveled or inclination compensated LiDAR scanners. The proposed 4DOF registration algorithm decomposes the parameter estimation into two parts: (1) the parameter estimation of horizontal translation vector and azimuth angle; and (2) the parameter estimation of the vertical translation vector. The parameter estimation of the horizontal translation vector and the azimuth angle is achieved by ortho projecting the TLS point clouds into feature images and registering the ortho projected feature images by Scale Invariant Feature Transform (SIFT) key points and descriptors. The vertical translation vector is estimated using the height difference of source points and target points in the overlapping regions after horizontally aligned. Three real TLS datasets captured by the Riegl VZ-400 and the Trimble SX10 and one simulated dataset were used to validate the proposed method. The proposed method was compared with four state-of-the-art 4DOF registration methods. The experimental results showed that: (1) the accuracy of the proposed coarse registration method ranges from 0.02 m to 0.07 m in horizontal and 0.01 m to 0.02 m in elevation, which is at centimeter-level and sufficient for fine registration; and (2) as many as 120 million points can be registered in less than 50 s, which is much faster than the compared methods.


2011 ◽  
Vol 162 (6) ◽  
pp. 178-185 ◽  
Author(s):  
Anne Bienert ◽  
Katharina Pech ◽  
Hans-Gerd Maas

Laser scanning is a fast and efficient 3-D measurement technique to capture surface points describing the geometry of a complex object in an accurate and reliable way. Besides airborne laser scanning, terrestrial laser scanning finds growing interest for forestry applications. These two different recording platforms show large differences in resolution, recording area and scan viewing direction. Using both datasets for a combined point cloud analysis may yield advantages because of their largely complementary information. In this paper, methods will be presented to automatically register airborne and terrestrial laser scanner point clouds of a forest stand. In a first step, tree detection is performed in both datasets in an automatic manner. In a second step, corresponding tree positions are determined using RANSAC. Finally, the geometric transformation is performed, divided in a coarse and fine registration. After a coarse registration, the fine registration is done in an iterative manner (ICP) using the point clouds itself. The methods are tested and validated with a dataset of a forest stand. The presented registration results provide accuracies which fulfill the forestry requirements.


2021 ◽  
Vol 13 (10) ◽  
pp. 1882
Author(s):  
Yijie Wu ◽  
Jianga Shang ◽  
Fan Xue

Coarse registration of 3D point clouds plays an indispensable role for parametric, semantically rich, and realistic digital twin buildings (DTBs) in the practice of GIScience, manufacturing, robotics, architecture, engineering, and construction. However, the existing methods have prominently been challenged by (i) the high cost of data collection for numerous existing buildings and (ii) the computational complexity from self-similar layout patterns. This paper studies the registration of two low-cost data sets, i.e., colorful 3D point clouds captured by smartphones and 2D CAD drawings, for resolving the first challenge. We propose a novel method named `Registration based on Architectural Reflection Detection’ (RegARD) for transforming the self-symmetries in the second challenge from a barrier of coarse registration to a facilitator. First, RegARD detects the innate architectural reflection symmetries to constrain the rotations and reduce degrees of freedom. Then, a nonlinear optimization formulation together with advanced optimization algorithms can overcome the second challenge. As a result, high-quality coarse registration and subsequent low-cost DTBs can be created with semantic components and realistic appearances. Experiments showed that the proposed method outperformed existing methods considerably in both effectiveness and efficiency, i.e., 49.88% less error and 73.13% less time, on average. The RegARD presented in this paper first contributes to coarse registration theories and exploitation of symmetries and textures in 3D point clouds and 2D CAD drawings. For practitioners in the industries, RegARD offers a new automatic solution to utilize ubiquitous smartphone sensors for massive low-cost DTBs.


Author(s):  
S. N. Mohd Isa ◽  
S. A. Abdul Shukor ◽  
N. A. Rahim ◽  
I. Maarof ◽  
Z. R. Yahya ◽  
...  

Abstract. In this paper, pairwise coarse registration is presented using real world point cloud data obtained by terrestrial laser scanner and without information on reference marker on the scene. The challenge in the data is because of multi-scanning which caused large data size in millions of points due to limited range about the scene generated from side view. Furthermore, the data have a low percentage of overlapping between two scans, and the point cloud data were acquired from structures with geometrical symmetry which leads to minimal transformation during registration process. To process the data, 3D Harris keypoint is used and coarse registration is done by Iterative Closest Point (ICP). Different sampling methods were applied in order to evaluate processing time for further analysis on different voxel grid size. Then, Root Means Squared Error (RMSE) is used to determine the accuracy of the approach and to study its relation to relative orientation of scan by pairwise registration. The results show that the grid average downsampling method gives shorter processing time with reasonable RMSE in finding the exact scan pair. It can also be seen that grid step size is having an inverse relationship with downsampling points. This setting is used to test on smaller overlapping data set of other heritage building. Evaluation on relative orientation is studied from transformation parameter for both data set, where Data set I, which higher overlapping data gives better accuracy which may be due to the small distance between the two point clouds compared to Data set II.


2015 ◽  
Vol 75 (10) ◽  
Author(s):  
Mohd Azwan Abbas ◽  
Halim Setan ◽  
Zulkepli Majid ◽  
Albert K. Chong ◽  
Lau Chong Luh ◽  
...  

Currently, coarse registration methods for scanner are required heavy operator intervention either before or after scanning process. There also have an automatic registration method but only applicable to a limited class of objects (e.g. straight lines and flat surfaces). This study is devoted to a search of a computationally feasible automatic coarse registration method with a broad range of applicability. Nowadays, most laser scanner systems are supplied with a camera, such that the scanned data can also be photographed. The proposed approach will exploit the invariant features detected from image to associate point cloud registration. Three types of detectors are included: scale invariant feature transform (SIFT), 2) Harris affine, and 3) maximally stable extremal regions (MSER). All detected features will transform into the laser scanner coordinate system, and their performance is measured based on the number of corresponding points. Several objects with different observation techniques were performed to evaluate the capability of proposed approach and also to evaluate the performance of selected detectors.  


Sign in / Sign up

Export Citation Format

Share Document