Effect of inoculum types and microbial community on thermophilic and mesophilic solid-state anaerobic digestion of empty fruit bunches for biogas production

2019 ◽  
Vol 133 ◽  
pp. 193-202 ◽  
Author(s):  
Wantanasak Suksong ◽  
Chonticha Mamimin ◽  
Poonsuk Prasertsan ◽  
Prawit Kongjan ◽  
Sompong O-Thong
2020 ◽  
Vol 296 ◽  
pp. 122304 ◽  
Author(s):  
Wantanasak Suksong ◽  
Wisarut Tukanghan ◽  
Kanathip Promnuan ◽  
Prawit Kongjan ◽  
Alissara Reungsang ◽  
...  

2021 ◽  
Author(s):  
Júlia Ronzella Ottoni ◽  
Suzan Prado Fernandes Bernal ◽  
Tiago Joelzer Marteres ◽  
Franciele Natividade Luiz ◽  
Viviane Piccin dos Santos ◽  
...  

Abstract The search for sustainable development has led countries around the world to seek the improvement of technologies that use renewable energy sources. One of the alternatives in the production of renewable energy comes from the use of waste including urban solids, animal excrement from livestock and biomass residues from agro-industrial plants. These materials may be used in the production of biogas, making its production highly sustainable and environmentally friendly, in addition to reducing public expenses for the treatment of those wastes. The present study evaluated the cultivated and uncultivated microbial community from a substrate (starter) used as an adapter for biogas production in anaerobic digestion processes. 16S rDNA metabarcoding revealed domain of bacteria belonging to the phyla Firmicutes, Bacteroidota, Chloroflexi and Synergistota. The methanogenic group was represented by the phyla Halobacterota and Euryarchaeota. Through 16S rRNA sequencing analysis of isolates recovered from the starter culture, the genera Rhodococcus, Vagococcus, Lysinibacillus, Niallia, Priestia, Robertmurraya, Luteimonas and Proteiniclasticum were recovered, groups that were not observed in the metabarcoding data. The groups mentioned are involved in the metabolism pathways of sugars and other compounds derived from lignocellulosic material, as well as in anaerobic methane production processes. The results demonstrate that culture-dependent approaches, such as isolation and sequencing of isolates, as well as culture-independent studies, such as the Metabarcoding approach, are complementary methodologies that, when integrated, provide robust and comprehensive information about the microbial communities involved in various processes, including the production of biogas in anaerobic digestion processes.


2019 ◽  
Vol 293 ◽  
pp. 122066 ◽  
Author(s):  
Yang Liu ◽  
Junnan Fang ◽  
Xinyu Tong ◽  
ChenChen Huan ◽  
Gaosheng Ji ◽  
...  

2018 ◽  
Vol 24 (12) ◽  
pp. 9875-9876
Author(s):  
Winardi Dwi Nugraha ◽  
Syafrudin ◽  
Windy Surya Permana ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 133 ◽  
Author(s):  
Shiwei Wang ◽  
Fang Ma ◽  
Weiwei Ma ◽  
Ping Wang ◽  
Guang Zhao ◽  
...  

In this study, the influence of temperature on biogas production efficiency and the microbial community structure was investigated in a two-phase anaerobic digestion reactor for co-digestion of cow manure and corn straw. The results illustrated that the contents of solluted chemical oxygen demand (SCOD) and volatile fatty acid (VFA) in the acidogenic phase and biogas production in the methanogenic phase maintained relatively higher levels at temperatures ranging from 35–25 °C. The methane content of biogas production could be maintained higher than 50% at temperatures above 25 °C. The microbial community structure analysis indicated that the dominant functional bacteria were Acinetobacter, Acetitomaculum, and Bacillus in the acidogenic phase and Cenarchaeum in the methanogenic phase at 35–25 °C. However, the performances of the acidogenic phase and the methanogenic phase could be significantly decreased at a lower temperature of 20 °C, and microbial activity was inhibited obviously. Accordingly, a low temperature was adverse for the performance of the acidogenic and methanogenic phases, while moderate temperatures above 25 °C were more conducive to high biogas production efficiency.


Sign in / Sign up

Export Citation Format

Share Document