Effects of single and combined exogenous application of abscisic acid and melatonin on cotton carbohydrate metabolism and yield under drought stress

2022 ◽  
Vol 176 ◽  
pp. 114302
Author(s):  
Wei Hu ◽  
Jipeng Zhang ◽  
Ziqing Wu ◽  
Dimitra A. Loka ◽  
Wenqing Zhao ◽  
...  
Plant Science ◽  
2021 ◽  
Vol 304 ◽  
pp. 110804
Author(s):  
Yudong Liu ◽  
Ling Wen ◽  
Yuan Shi ◽  
Deding Su ◽  
Wang Lu ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1158
Author(s):  
Katy Díaz ◽  
Luis Espinoza ◽  
Rodrigo Carvajal ◽  
Evelyn Silva-Moreno ◽  
Andrés F. Olea ◽  
...  

Brassinosteroids (BRs) are plant hormones that play an essential role in plant development and have the ability to protect plants against various environmental stresses, such as low and high temperature, drought, heat, salinity, heavy metal toxicity, and pesticides. Mitigation of stress effects are produced through independent mechanisms or by interaction with other important phytohormones. However, there are few studies in which this property has been reported for BRs analogs. Thus, in this work, the enhancement of drought stress tolerance of A. thaliana was assessed for a series of 2-deoxybrassinosteroid analogs. In addition, the growth-promoting activity in the Rice Lamina Inclination Test (RLIT) was also evaluated. The results show that analog 1 exhibits similar growth activity as brassinolide (BL; used as positive control) in the RLIT bioassay. Interestingly, both compounds increase their activities by a factor of 1.2–1.5 when they are incorporated to polymer micelles formed by Pluronic F-127. On the other hand, tolerance to water deficit stress of Arabidopsis thaliana seedlings was evaluated by determining survival rate and dry weight of seedlings after the recovery period. In both cases, the effect of analog 1 is higher than that exhibited by BL. Additionally, the expression of a subset of drought stress marker genes was evaluated in presence and absence of exogenous applied BRs. Results obtained by qRT-PCR analysis, indicate that transcriptional changes of AtDREBD2A and AtNCED3 genes were more significant in A. thaliana treated with analog 1 in homogeneous solution than in that treated with BL. These changes suggest the activation of alternative pathway in response to water stress deficit. Thus, exogenous application of BRs synthetic analogs could be a potential tool for improvement of crop production under stress conditions.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 280
Author(s):  
Diana Saja-Garbarz ◽  
Agnieszka Ostrowska ◽  
Katarzyna Kaczanowska ◽  
Franciszek Janowiak

The aim of this study was to investigate the accumulation of silicon in oilseed rape and to characterize the changes in chosen water balance parameters in response to drought. The following parameters were estimated: water content, osmotic and water potential, evapotranspiration, stomatal conductance and abscisic acid level under optimal and drought conditions. It was shown that oilseed rape plants accumulate silicon after its supplementation to the soil, both in the case of silicon alone and silicon together with iron. It was revealed that silicon (without iron) helps maintain constant water content under optimal conditions. While no silicon influence on osmotic regulation was observed, a transpiration decrease was detected under optimal conditions after silicon application. Under drought, a reduction in stomatal conductance was observed, but it was similar for all plants. The decrease in leaf water content under drought was accompanied by a significant increase in abscisic acid content in leaves of control plants and those treated with silicon together with iron. To sum up, under certain conditions, silicon is accumulated even in non-accumulator species, such as oilseed rape, and presumably improves water uptake under drought stress.


Author(s):  
Luying Sun ◽  
Fengbin Song ◽  
Xiancan Zhu ◽  
Shengqun Liu ◽  
Fulai Liu ◽  
...  

2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


2007 ◽  
Vol 145 (3) ◽  
pp. 853-862 ◽  
Author(s):  
Marina Efetova ◽  
Jürgen Zeier ◽  
Markus Riederer ◽  
Chil-Woo Lee ◽  
Nadja Stingl ◽  
...  

2017 ◽  
Vol 111 ◽  
pp. 129-143 ◽  
Author(s):  
Mohammad Hossein Sheikh Mohammadi ◽  
Nematollah Etemadi ◽  
Mohammad Mehdi Arab ◽  
Mostafa Aalifar ◽  
Mostafa Arab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document