Interactive effects of increased plant density, cultivars and N rates in environments with different cotton yield recovery potential

2022 ◽  
Vol 176 ◽  
pp. 114394
Author(s):  
Leonardo Vesco Galdi ◽  
Carlos Felipe dos Santos Cordeiro ◽  
Bruno de Senna e Silva ◽  
Elio Jesus Rodriguez de La Torre ◽  
Fábio Rafael Echer
2014 ◽  
Vol 106 (4) ◽  
pp. 1111-1118 ◽  
Author(s):  
Lu Feng ◽  
Garrett Mathis ◽  
Glen Ritchie ◽  
Yinchun Han ◽  
Yabing Li ◽  
...  

2017 ◽  
Vol 30 (3) ◽  
pp. 670-678 ◽  
Author(s):  
ROGÉRIO PERES SORATTO ◽  
TIAGO ARANDA CATUCHI ◽  
EMERSON DE FREITAS CORDOVA DE SOUZA ◽  
JADER LUIS NANTES GARCIA

ABSTRACT The objective of this work was to evaluate the effect of plant densities and sidedressed nitrogen (N) rates on nutrition and productive performance of the common bean cultivars IPR 139 and Pérola. For each cultivar, a randomized complete block experimental design was used in a split-plot arrangement, with three replicates. Plots consisted of three plant densities (5, 7, and 9 plants ha-1) and subplots of five N rates (0, 30, 60, 120, and 180 kg ha-1). Aboveground dry matter, leaf macro- and micronutrient concentrations, yield components, grain yield, and protein concentration in grains were evaluated. Lower plant densities (5 and 7 plants m-1) increased aboveground dry matter production and the number of pods per plant and did not reduce grain yield. In the absence of N fertilization, reduction of plant density decreased N concentration in common bean leaves. Nitrogen fertilization linearly increased dry matter and leaf N concentration, mainly at lower plant densities. Regardless of plant density, the N supply linearly increased grain yield of cultivars IPR 139 and Pérola by 17.3 and 52.2%, respectively.


2018 ◽  
Vol 98 (6) ◽  
pp. 1331-1341 ◽  
Author(s):  
W.E. May ◽  
M.P. Dawson ◽  
C.L. Lyons

In the past, most sunflower research was conducted in tilled cropping systems and was based on wide row configurations established using precision planters. Little agronomic information is available for the no-till systems predominant in Saskatchewan, where crops are typically seeded in narrow rows using an air drill. Two studies were conducted in Saskatchewan to determine the optimum seeding and nitrogen (N) rates for short-season sunflowers in a no-till cropping system. The N rate study used 5 N rates (10, 30, 50, 70, and 90 kg N ha−1) with the hybrid 63A21. The seeding rate study used 7 seeding rates (37 000, 49 000, 61 000, 74 000, 86 000, 98 000, and 111 000 seeds ha−1) with two cultivars, AC Sierra (open pollinated) and 63A21 (hybrid). There was a linear yield increase as the N rate increased from 10 to 90 kg N ha−1. Based on the N rates tested in this study and current N fertilizer costs below $1 kg−1, sunflower yields and gross returns were most favorable at 90 kg N ha−1. Future N response research with a wider range of N rates is warranted to best determine the optimum N rate. The optimum seeding rate was between 98 000 and 111 000 seeds ha−1 for AC Sierra and between 74 000 and 86 000 seeds ha−1 for 63A21. The optimum plant density, approximately 70 000 to 75 000 plants ha−1, was similar for both cultivars. These results are higher than the current recommended seeding rates for wide-row precision planting systems in areas with a longer growing season.


2010 ◽  
Vol 119 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Hezhong Dong ◽  
Xiangqiang Kong ◽  
Weijiang Li ◽  
Wei Tang ◽  
Dongmei Zhang

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Xinghu SONG ◽  
Ying HUANG ◽  
Yuan YUAN ◽  
Atta Tung SHAHBAZ ◽  
Souliyanonh BIANGKHAM ◽  
...  

Abstract Background An optimal N rate is one of the basic determinants for high cotton yield. The purpose of this study was to determine the optimal N rate on a new cotton cropping pattern with late-sowing, high density and one-time fertilization at the first flower period in Yangtze River Valley, China. A 2-year experiment was conducted in 2015 and 2016 with a randomized complete block design. The cotton growth process, yield, and biomass accumulation were examined. Results The results showed that N rates had no effect on cotton growing progress or periods. Cotton yield was increased with N rates increasing from 120 to 180 kg·hm−2, while the yield was not increased when the N rate was beyond 180 kg·hm−2, or even decreased (9∼29%). Cotton had the highest biomass at the N rate of 180 kg·hm−2 is due to its highest accumulation speed during the fast accumulation period. Conclusions The result suggests that the N rate for cotton could be reduced further to be 180 kg·hm− 2 under the new cropping pattern in the Yangtze River Valley, China.


Sign in / Sign up

Export Citation Format

Share Document