Fe-based amorphous alloys with superior soft-magnetic properties prepared via smelting reduction of high-phosphorus oolitic iron ore

2022 ◽  
Vol 141 ◽  
pp. 107441
Author(s):  
Guoyang Zhang ◽  
Hongwei Ni ◽  
Yang Li ◽  
Tao Liu ◽  
Anding Wang ◽  
...  
1994 ◽  
Vol 75 (10) ◽  
pp. 6940-6942 ◽  
Author(s):  
P. Quintana ◽  
E. Amano ◽  
R. Valenzuela ◽  
J. T. S. Irvine

2002 ◽  
Vol 102 (2) ◽  
pp. 309-316 ◽  
Author(s):  
P. Kwapuliński ◽  
Z. Stokłosa ◽  
A. Chrobak ◽  
J. Rasek ◽  
G. Haneczok

2015 ◽  
Vol 1120-1121 ◽  
pp. 440-445
Author(s):  
Hua Man

The glass forming ability and magnetic properties were investigated for adding neodymium to the Fe71-xNb4B25Ndx (x=0, 3, 5, 7,10) alloys prepared by copper suction casting. It was found that proper neodymium (x=5~10 at.%) could improve glass forming ability of Fe-Nb-B alloys effectively. Bulk amorphous Fe66Nd5B25Nb4 and Fe64Nd7B25Nb4 samples were obtained and presented high thermal stability and good soft magnetic properties. The value of activation energy of the first crystallization peak for the bulk amorphous alloy Fe64Nd7B25Nb4 is 683 kJ/mol.


2016 ◽  
Vol 61 (1) ◽  
pp. 445-450
Author(s):  
K. Błoch

This paper presents studies relating to the structure, soft magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1). On the basis of the performed X-ray diffraction studies and Mössbauer spectroscopy, it was found that investigated samples were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable. The change in the chemical structure of the investigated alloys has a major effect on their soft magnetic properties; especially on coercivity and saturation magnetization. On the basis of the magnetization curves analysis, the spin wave stiffness parameter Dsp were determined for the investigated alloys.


2013 ◽  
Vol 203-204 ◽  
pp. 380-385 ◽  
Author(s):  
Małgorzata Karolus

Amorphous alloys based on iron, obtained by melt spinning technique, are modern and very promising soft magnetic materials. The thermal annealing at temperatures closed to the crystallization temperature can cause an increase of magnetic permeability more than 10 times i.e. the so called enhancement of soft magnetic properties effect (ESMP). It is usually explained by formation of iron nanocrystallites in amorphous surroundings or by formation of the relaxed amorphous phase. Such a microstructure leads to averaging out of magnetic anisotropy and cause the ESMP.


Sign in / Sign up

Export Citation Format

Share Document