scholarly journals Thermal stability of nanocrystalline CoCrFeNi multi-principal element alloy: Effect of the degree of severe plastic deformation

2022 ◽  
Vol 142 ◽  
pp. 107445
Author(s):  
Pham Tran Hung ◽  
Megumi Kawasaki ◽  
Jae-Kyung Han ◽  
Ábel Szabó ◽  
János L. Lábár ◽  
...  
2010 ◽  
Vol 297-301 ◽  
pp. 1312-1321 ◽  
Author(s):  
Vladimir V. Popov ◽  
A.V. Stolbovkiy ◽  
E.N. Popova ◽  
V.P. Pilyugin

Evolution of structure of high-purity and commercially pure copper at severe plastic deformation (SPD) by high pressure torsion (HPT) at room temperature and in liquid nitrogen has been studied by transmission electron microscopy (TEM) and measurements of microhardness. Thermal stability of structure obtained by HPT has been investigated. Factors preventing from obtaining nanocrystalline structure in Cu are analyzed and possible ways of their overcoming are discussed.


2013 ◽  
Vol 55 (12) ◽  
pp. 2608-2612
Author(s):  
Kh. Ya. Mulyukov ◽  
Ya. A. Abzgil’din ◽  
I. Z. Sharipov ◽  
R. R. Mulyukov ◽  
V. A. Popov

2018 ◽  
Vol 385 ◽  
pp. 273-277
Author(s):  
Elena Sarkeeva ◽  
Marina M. Abramova ◽  
Igor V. Alexandrov

The article studies an influence of temperature of severe plastic deformation (SPD) and post-deformation heat treatment on microstructure, mechanical properties and thermal stability of the Cu-0.5Cr-0.2Zr alloy. The results demonstrate that strength is considerably increased to 900 MPa by high pressure torsion (HPT) at room temperature. Subsequent ageing at 450 °С during 1 hour leads to a decay of solid solution and an allocation of dispersion particles that further incrises strength to 900 MPa, restores electrical conductivity to 70% IACS (International annealed copper standard) and enhances thermal stability of the alloy. When deformation temperature is increased to 300°С, strength is 690 MPa that is lower than in the case of deformation at room temperature that is related to reversion process at deformation. Additional a aging does not lead to an increase of strength characteristics.


2014 ◽  
Vol 880 ◽  
pp. 179-183
Author(s):  
Evgeniy V. Naydenkin ◽  
Konstantin V. Ivanov ◽  
Gennadiy E. Rudenskii

The paper shows that high thermal stability of the ultrafine-grained structure of aluminum alloy produced by severe plastic deformation is related to S-phase particles. The sequence of phase transformations of zirconium-doped ultrafine-grained alloy Al-Mg-Li in heating is revealed. The paper also determines temperatures at which depending on crystal structure two types of S-phase particles can form.


Sign in / Sign up

Export Citation Format

Share Document