Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model

2022 ◽  
Vol 104 ◽  
pp. 108464
Author(s):  
Yuanqiang Dai ◽  
Ying Sheng ◽  
Yu Deng ◽  
Heng Wang ◽  
Zhenzhen Zhao ◽  
...  
2021 ◽  
Vol 18 (10) ◽  
pp. 2037-2043
Author(s):  
Hong Zhu ◽  
Dan Ren ◽  
Lan Xiao ◽  
Ting Zhang ◽  
Ruomeng Li ◽  
...  

Purpose: To investigate whether the cytoprotective effect of anthocyanin (Anc) on oxygen-glucose deprivation/reperfusion (OGD/R)-induced cell injury is related to apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Methods: PC12 cells were pre-treated with various concentrations of Anc (10, 50, and 100 μg/mL) in OGD/R-induced cell injury model. The 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay was used to assess cell viability. Cell apoptosis was measured by lactic acid dehydrogenase (LDH) release assay and flow cytometry. Western blot was employed to determine the protein expressions of BCL-2, BAX, caspase-3, p-ASK1 (Thr845), p-JNK, and p-p38. Results: The results indicate that Anc increased the viability of PC12 cells after OGD/R exposure (p < 0.05), and also efficiently rescued OGD/R-induced apoptosis (p < 0.05). Mechanistic studies showed that these protective roles of Anc are related to the inhibition of ASK1/JNK/p38 signaling pathway. Conclusion: The results indicate Anc protects against OGD/R-induced cell injury by enhancing cell viability and inhibiting cell apoptosis. The underlying mechanism of action is partly via inactivation of ASK1/JNK/p38 signaling pathway. Thus, Anc has promise as a potential natural agent to prevent and treat cerebral ischemia-reperfusion injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Aihua Qi ◽  
Yiyun Cao ◽  
Aizhong Wang

Ketamine and propofol are commonly used anaesthetic reagents. Recent research revealed that ketamine and propofol have an important role in cell survival. However, it remains unknown whether they affect the outcome of hypoxic-ischemic brain injury. To address this issue, we in this study investigated the effects of ketamine and propofol on the survival and proliferation of neuronal PC12 cells after exposure to oxygen-glucose deprivation- (OGD-) induced injury. PC12 cells were maintained under a 3-dimensional (3D) culture system to mimic a real physiological microenvironment. The cell injury was induced by 5% CO2 and 95% N2 for a different time point. MTT assay was used for the cell proliferation assay. The cell apoptosis was evaluated by annexin V and propidium iodide (PI) labeling, immunofluorescence staining, transmission electron microscopy (TEM), flow cytometry, and Western blot, respectively. Our results showed that PC12 cell apoptosis was significantly increased for up to 70% after the cells were treated with OGD for 24 hours and reduced to baseline at the 72-hour time point. However, pretreatment with ketamine and propofol significantly protected the cells from OGD-induced cell apoptosis, as evidenced by more expression of antiapoptotic Bcl-2 and lower expression of proapoptotic cleaved caspase-3, phosphor-SAPK/JNK, and phosphor-c-Jun than those of untreated control cells. Thus, we conclude that ketamine and propofol protected PC12 cells from OGD-induced cell apoptosis, at least partially through the SAPK/JNK signalling pathway.


2021 ◽  
Author(s):  
Yulin Wang ◽  
Ying Jian ◽  
Xiaofu Zhang ◽  
Bin Ni ◽  
Mingwei Wang ◽  
...  

Abstract Melatonin has been shown to exert protective effect during myocardial ischemia/reperfusion (I/R). However, the underlying mechanism is not completely understood. Using the oxygen-glucose deprivation and reperfusion (OGD/R) model of H9c2 cells in vitro, we found that melatonin alleviated OGD/R-induced H9c2 cell injury via inhibiting Foxo3a/Bim signaling pathway. Inhibition of Rac1 activation contributed to the protective effect of melatonin against OGD/R injury in H9c2 cells. Additionally, melatonin inhibited OGD/R-activated Foxo3a/Bim signaling pathway through inactivation of Rac1. Furthermore, JNK inactivation was responsible for Rac1 inhibition-mediated inactivation of Foxo3a/Bim signaling pathway and decreased cell injury in melatonin-treated H9c2 cells. Taken together, these findings identified a Rac1/JNK/Foxo3a/Bim signaling pathway in melatonin-induced protective effect against OGD/R injury in H9c2 cells. This study provided a novel insight into the protective mechanism of melatonin against myocardial I/R injury.


2019 ◽  
Vol 24 (1) ◽  
Author(s):  
Heng Zhang ◽  
Jie Zhou ◽  
Mingxia Zhang ◽  
Yanjie Yi ◽  
Bing He

Abstract Background The expression level of miR-376c-3p is significantly lower in infants with neonatal hypoxic-ischemic encephalopathy (HIE) than in healthy infants. However, the biological function of this microRNA remains largely elusive. Methods We used PC-12 and SH-SY5Y cells to establish an oxygen–glucose deprivation (OGD) cell injury model to mimic HIE in vitro. The miR-376c-3p expression levels were measured using quantitative reverse transcription PCR. The CCK-8 assay and flow cytometry were utilized to evaluate OGD-induced cell injury. The association between miR-376c-3p and inhibitor of growth 5 (ING5) was validated using the luciferase reporter assay. Western blotting was conducted to determine the protein expression of CDK4, cyclin D1, Bcl-2 and Bax. Results MiR-376c-3p was significantly downregulated in the OGD-induced cell injury model. Its overexpression elevated cell viability and impaired cell cycle G0/G1 phase arrest and apoptosis in PC-12 and SH-SY5Y cells after OGD. Downregulation of miR-376c-3p gave the opposite results. We further demonstrated that ING5 was a negatively regulated target gene of miR-376c-3p. Importantly, ING5 knockdown had a similar effect to miR-376c-3p-mediated protective effects against cell injury induced by OGD. Its overexpression abolished these protective effects. Conclusion Our data suggest that miR-376c-3p downregulated ING5 to exert protective effects against OGD-induced cell injury in PC-12 and SH-SY5Y cells. This might represent a novel therapeutic approach for neonatal HIE treatment.


2017 ◽  
Vol 243 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Tian Tian ◽  
Junan Zeng ◽  
Guangyu Zhao ◽  
Wenjing Zhao ◽  
Songyi Gao ◽  
...  

Orientin (luteolin-8-C-glucoside) is a phenolic compound found abundantly in millet, juice, and peel of passion fruit and has been shown to have antioxidant properties. In the present study, we explored the effects of orientin on oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury in primary culture of rat cortical neurons using an in vitro model of neonatal ischemic brain injury. The reduced cell viability and elevated lactate dehydrogenase leakage were observed after OGD/RP exposure, which were then reversed by orientin (10, 20, and 30 µM) pretreatment in a dose-dependent manner. Additionally, OGD/RP treatment resulted in significant oxidative stress, accompanied by enhanced intracellular reactive oxygen species (ROS) generation, and obvious depletion in the activities of intracellular Mn-superoxide dismutase, catalase, and glutathione peroxidase antioxidases. However, these effects were dose dependently restored by orientin pretreatment. We also found that orientin pretreatment dose dependently suppressed [Ca2+]i increase and mitochondrial membrane potential dissipation caused by OGD/RP in primary culture of rat cortical neurons. Western blot analysis showed that OGD/RP exposure induced a distinct decrease of Bcl-2 protein and a marked elevation of Bax, caspase-3, and cleaved caspase-3 proteins; whereas these effects were dose dependently reversed by orientin incubation. Both the caspase-3 activity and the apoptosis rate were increased under OGD/RP treatment, but was then dose dependently down-regulated by orientin (10, 20, and 30 µM) incubation. Moreover, orientin pretreatment dose dependently inhibited OGD/RP-induced phosphorylation of JNK and ERK1/2. Notably, JNK inhibitor SP600125 and ERK1/2 inhibitor PD98059 also dramatically attenuated OGD/RP-induced cell viability loss and ROS generation, and further, orientin failed to protect cortical neurons with the interference of JNK activator anisomycin or ERK1/2 activator FGF-2. Taken together, these results demonstrated that orientin has significant neuroprotective effects against OGD/RP-induced cell injury via JNK and ERK1/2 signaling pathways in primary culture of rat cortical neurons. Impact statement Orientin has been used in traditional eastern medicine and reported to possess antioxidant properties. However, the effects of orientin on neonatal ischemic brain injury and the underlying mechanisms involved have not been studied. Our results showed that orientin exerts significant neuroprotective effects on cell injury caused by oxygen-glucose deprivation/reperfusion via the JNK and ERK1/2 signaling pathways in primary culture of rat cortical neurons, implying the potential therapeutic application of orientin via the suppression of oxidative stress and cell apoptosis. This research suggested that orientin may be used as a therapeutic and preventive option for newborn cerebral ischemia/reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document