Anticytokine autoantibodies: Autoimmunity trespassing on antimicrobial immunity

2022 ◽  
Vol 149 (1) ◽  
pp. 24-28
Author(s):  
Aristine Cheng ◽  
Steven M. Holland
2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Masato Tamari ◽  
Aaron M. Ver Heul ◽  
Brian S. Kim

Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2018 ◽  
Vol 11 (559) ◽  
pp. eaat6903 ◽  
Author(s):  
Julia Sanchez-Garrido ◽  
Vanessa Sancho-Shimizu ◽  
Avinash R. Shenoy

The multidomain scaffold protein p62 (also called sequestosome-1) is involved in autophagy, antimicrobial immunity, and oncogenesis. Mutations in SQSTM1, which encodes p62, are linked to hereditary inflammatory conditions such as Paget’s disease of the bone, frontotemporal dementia (FTD), amyotrophic lateral sclerosis, and distal myopathy with rimmed vacuoles. Here, we report that p62 was proteolytically trimmed by the protease caspase-8 into a stable protein, which we called p62TRM. We found that p62TRM, but not full-length p62, was involved in nutrient sensing and homeostasis through the mechanistic target of rapamycin complex 1 (mTORC1). The kinase RIPK1 and caspase-8 controlled p62TRM production and thus promoted mTORC1 signaling. An FTD-linked p62 D329G polymorphism and a rare D329H variant could not be proteolyzed by caspase-8, and these noncleavable variants failed to activate mTORC1, thereby revealing the detrimental effect of these mutations. These findings on the role of p62TRM provide new insights into SQSTM1-linked diseases and mTORC1 signaling.


2018 ◽  
Vol 14 (11) ◽  
pp. e1007397 ◽  
Author(s):  
Daniel Szappanos ◽  
Roland Tschismarov ◽  
Thomas Perlot ◽  
Sandra Westermayer ◽  
Katrin Fischer ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Su ◽  
Renjie Chang ◽  
Weiwei Zheng ◽  
Yuena Sun ◽  
Tianjun Xu

Pathogen infection can cause the production of inflammatory cytokines, which are key mediators that cause the host’s innate immune response. Therefore, proper regulation of immune genes associated with inflammation is essential for immune response. Among them, microRNAs (miRNAs) as gene regulator have been widely reported to be involved in the innate immune response of mammals. However, the regulatory network in which miRNAs are involved in the development of inflammation is largely unknown in lower vertebrates. Here, we identified two miRNAs from miiuy croaker (Miichthys miiuy), miR-210 and miR-3570, which play a negative regulatory role in host antibacterial immunity. We found that the expressions of miR-210 and miR-3570 were significantly upregulated under the stimulation of Gram-negative bacterium vibrio harveyi and LPS (lipopolysaccharide). Induced miR-210 and miR-3570 inhibit inflammatory cytokine production by targeting RIPK2, thereby avoiding excessive inflammation. In particular, we found that miR-210 and miR-3570 negatively regulate antimicrobial immunity by regulating the RIPK2-mediated NF-κB signaling pathway. The collective results indicated that both miRNAs are used as negative feedback regulators to regulate RIPK2-mediated NF-κB signaling pathway and thus play a regulatory role in bacteria-induced inflammatory response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sindhu Manivasagam ◽  
Robyn S. Klein

Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-λs) are antimicrobial cytokines that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin (IL)10Rβ, which defines the cellular specificity of the responses to the cytokines. Recent studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells, which has led to the identification of IFNL as a putative therapeutic target for autoimmune diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity, IFNL-mediated immunomodulation of both innate and adaptive immune cells, and induction of autoimmunity.


2019 ◽  
Vol 51 (12) ◽  
pp. 1-10 ◽  
Author(s):  
Miwa Sasai ◽  
Masahiro Yamamoto

AbstractHosts have been fighting pathogens throughout the evolution of all infectious diseases. Toxoplasma gondii is one of the most common infectious agents in humans but causes only opportunistic infection in healthy individuals. Similar to antimicrobial immunity against other organisms, the immune response against T. gondii activates innate immunity and in turn induces acquired immune responses. After activation of acquired immunity, host immune cells robustly produce the proinflammatory cytokine interferon-γ (IFN-γ), which activates a set of IFN-γ-inducible proteins, including GTPases. IFN-inducible GTPases are essential for cell-autonomous immunity and are specialized for effective clearance and growth inhibition of T. gondii by accumulating in parasitophorous vacuole membranes. Recent studies suggest that the cell-autonomous immune response plays a protective role in host defense against not only T. gondii but also various intracellular bacteria. Moreover, the negative regulatory mechanisms of such strong immune responses are also important for host survival after infection. In this review, we will discuss in detail recent advances in the understanding of host defenses against T. gondii and the roles played by cell-autonomous immune responses.


2004 ◽  
Vol 58 (2) ◽  
pp. 84-89 ◽  
Author(s):  
Charles S. Pavia ◽  
Michelle La Mothe ◽  
Marie Kavanagh

2005 ◽  
Vol 230 (9) ◽  
pp. 645-651 ◽  
Author(s):  
James Rogers ◽  
Izabella Perkins ◽  
Alberto van Olphen ◽  
Nicholas Burdash ◽  
Thomas W. Klein ◽  
...  

The primary polyphenol in green tea extract is the catechin epigallocatechin gallate (EGCG). Various studies have shown significant suppressive effects of catechin on mammalian cells, either tumor or normal cells, including lymphoid cells. Previous studies from this laboratory reported that EGCG has marked suppressive activity on murine macrophages infected with the intracellular bacterium Legionella pneumophila (Lp), an effect mediated by enhanced production of both tumor necrosis factor-α (TNF-α) and γ-interferon (IFN-γ). In the present study, primary murine bone marrow (BM)-derived dendritic cells (DCs), a phagocytic monocytic cell essential for innate immunity to intracellular microorganisms, such as Lp, were stimulated in vitro with the microbial stimulant lipopolysaccharide (LPS) from gram-negative bacteria, the cell wall component from gram-positive bacteria muramyldipeptide (MDP) or infected with Lp. Production of the T helper cell (Th1)-activating cytokine, interleukin-12 (IL-12) and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α), produced mainly by phagocytic cells and important for antimicrobial immunity, was determined in cell culture supernatants by enzyme-linked immunosorbent assay (ELISA). Treatment of the cells with EGCG inhibited, in a dose-dependent manner, production of IL-12. In contrast, enhanced production of TNF-α occurred in a dose-dependent manner in the DC cultures stimulated with either soluble bacterial product or infected with Lp. Thus, the results of this study show that the EGCG catechin has a marked effect in modulating production of these immunoregulatory cytokines in stimulated DCs, which are important for antimicrobial immunity, especially innate immunity. Further studies are necessary to characterize the physiologic function of the effect of EGCG on TNF-α and IL-12 during Lp infection, and the mechanisms involved.


Sign in / Sign up

Export Citation Format

Share Document