scholarly journals KRAS Mutation Allele Frequency Impacts Prognosis in Pancreatic Ductal Adenocarcinoma Using Next Generation Sequencing

2021 ◽  
Vol 233 (5) ◽  
pp. S150-S151
Author(s):  
David O. Nauheim ◽  
David Moskal ◽  
Bryan Renslo ◽  
Wei Jiang ◽  
Charles J. Yeo ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imteyaz Ahmad Khan ◽  
Safoora Rashid ◽  
Nidhi Singh ◽  
Sumaira Rashid ◽  
Vishwajeet Singh ◽  
...  

AbstractEarly-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.


Pancreatology ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. S49
Author(s):  
Mariacristina Di Marco ◽  
Sandra Durante ◽  
Silvia Vecchiarelli ◽  
Elisa Grassi ◽  
Andrea Palloni ◽  
...  

2021 ◽  
Vol 19 (3) ◽  
pp. 247-252
Author(s):  
Robert J. Besaw ◽  
Adrienne R. Terra ◽  
Grace L. Malvar ◽  
Tobias R. Chapman ◽  
Lauren M. Hertan ◽  
...  

Undifferentiated carcinoma with osteoclast-like giant cells (UCOGC) of the pancreas is a rare and potentially aggressive variant of pancreatic ductal adenocarcinoma. Data on this disease are sparse, and despite genetic similarities to pancreatic ductal adenocarcinoma, UCOGC clinical outcomes can be markedly different. We report on a female patient aged 62 years who presented with UCOGC with pulmonary metastases initially treated with 2 lines of cytotoxic chemotherapy. After rapid disease progression with both cytotoxic treatments, the patient’s tissue was sent for next-generation sequencing, which revealed a high tumor mutation burden (32 mutations per megabase), as well as somatic mutations in BRAF, NF1, PIK3CA, CDKN2A, TERT, and TP53. Pancreatic cancers have previously demonstrated suboptimal responses to immunotherapeutic approaches. However, given the high tumor mutation burden and distinctiveness of the tumor class, the patient began third-line pembrolizumab monotherapy after palliative radiation to the rapidly progressing and painful abdominal mass from her primary tumor. She had a marked response in her primary UCOGC tumor and metastatic sites, and she remains on pembrolizumab monotherapy with ongoing response after 32 months of therapy. Recent evidence showing significant PD-L1 enrichment on neoplastic cells of undifferentiated carcinomas (including UCOGC) may indicate a role for immunotherapeutic approaches in these patients. Rare cancers such as UCOGC and other undifferentiated carcinomas may benefit from next-generation sequencing to inform treatment decisions when standards of care are absent, as in this report.


Sign in / Sign up

Export Citation Format

Share Document