scholarly journals Universal and strain specific structure features of segment 8 genomic RNA of influenza A virus – application of 4-thiouridine photocrosslinking

2021 ◽  
pp. 101245
Author(s):  
Marta Soszynska-Jozwiak ◽  
Maciej Pszczola ◽  
Julita Piasecka ◽  
Jake M. Peterson ◽  
Walter N. Moss ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148281 ◽  
Author(s):  
Elzbieta Lenartowicz ◽  
Julita Kesy ◽  
Agnieszka Ruszkowska ◽  
Marta Soszynska-Jozwiak ◽  
Paula Michalak ◽  
...  

2016 ◽  
Vol 26 (5) ◽  
pp. 277-285 ◽  
Author(s):  
Elzbieta Lenartowicz ◽  
Aitor Nogales ◽  
Elzbieta Kierzek ◽  
Ryszard Kierzek ◽  
Luis Martínez-Sobrido ◽  
...  

Vaccine ◽  
2012 ◽  
Vol 30 (51) ◽  
pp. 7359-7367 ◽  
Author(s):  
Emilie Fournier ◽  
Vincent Moules ◽  
Boris Essere ◽  
Jean-Christophe Paillart ◽  
Jean-Daniel Sirbat ◽  
...  

2006 ◽  
Vol 80 (1) ◽  
pp. 252-261 ◽  
Author(s):  
John F. Regan ◽  
Yuying Liang ◽  
Tristram G. Parslow

ABSTRACT The RNA-dependent RNA polymerase of influenza A virus is composed of three subunits that together synthesize all viral mRNAs and also replicate the viral genomic RNA segments (vRNAs) through intermediates known as cRNAs. Here we describe functional characterization of 16 site-directed mutants of one polymerase subunit, termed PA. In accord with earlier studies, these mutants exhibited diverse, mainly quantitative impairments in expressing one or more classes of viral RNA, with associated infectivity defects of varying severity. One PA mutant, however, targeting residues 507 and 508, caused only modest perturbations of RNA expression yet completely eliminated the formation of plaque-forming virus. Polymerases incorporating this mutant, designated J10, proved capable of synthesizing translationally active mRNAs and of replicating diverse cRNA or vRNA templates at levels compatible with viral infectivity. Both the mutant protein and its RNA products were appropriately localized in the cytoplasm, where influenza virus assembly occurs. Nevertheless, J10 failed to generate infectious particles from cells in a plasmid-based influenza virus assembly assay, and hemagglutinating material from the supernatants of such cells contained little or no nuclease-resistant genomic RNA. These findings suggest that PA has a previously unrecognized role in assembly or release of influenza virus virions, perhaps influencing core structure or the packaging of vRNAs or other essential components into nascent influenza virus particles.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Paula Michalak ◽  
Marta Soszynska-Jozwiak ◽  
Ewa Biala ◽  
Walter N. Moss ◽  
Julita Kesy ◽  
...  

2011 ◽  
Vol 40 (5) ◽  
pp. 2197-2209 ◽  
Author(s):  
Emilie Fournier ◽  
Vincent Moules ◽  
Boris Essere ◽  
Jean-Christophe Paillart ◽  
Jean-Daniel Sirbat ◽  
...  

2013 ◽  
Vol 110 (41) ◽  
pp. 16604-16609 ◽  
Author(s):  
C. Gavazzi ◽  
M. Yver ◽  
C. Isel ◽  
R. P. Smyth ◽  
M. Rosa-Calatrava ◽  
...  

2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Maria C. White ◽  
John Steel ◽  
Anice C. Lowen

ABSTRACT Influenza A virus (IAV) RNA packaging signals serve to direct the incorporation of IAV gene segments into virus particles, and this process is thought to be mediated by segment-segment interactions. These packaging signals are segment and strain specific, and as such, they have the potential to impact reassortment outcomes between different IAV strains. Our study aimed to quantify the impact of packaging signal mismatch on IAV reassortment using the human seasonal influenza A/Panama/2007/99 (H3N2) and pandemic influenza A/Netherlands/602/2009 (H1N1) viruses. Focusing on the three most divergent segments, we constructed pairs of viruses that encoded identical proteins but differed in the packaging signal regions on a single segment. We then evaluated the frequency with which segments carrying homologous versus heterologous packaging signals were incorporated into reassortant progeny viruses. We found that, when segment 4 (HA) of coinfecting parental viruses was modified, there was a significant preference for the segment containing matched packaging signals relative to the background of the virus. This preference was apparent even when the homologous HA constituted a minority of the HA segment population available in the cell for packaging. Conversely, when segment 6 (NA) or segment 8 (NS) carried modified packaging signals, there was no significant preference for homologous packaging signals. These data suggest that movement of NA and NS segments between the human H3N2 and H1N1 lineages is unlikely to be restricted by packaging signal mismatch, while movement of the HA segment would be more constrained. Our results indicate that the importance of packaging signals in IAV reassortment is segment dependent. IMPORTANCE Influenza A viruses (IAVs) can exchange genes through reassortment. This process contributes to both the highly diverse population of IAVs found in nature and the formation of novel epidemic and pandemic IAV strains. Our study sought to determine the extent to which IAV packaging signal divergence impacts reassortment between seasonal IAVs. Our knowledge in this area is lacking, and insight into the factors that influence IAV reassortment will inform and strengthen ongoing public health efforts to anticipate the emergence of new viruses. We found that the packaging signals on the HA segment, but not the NA or NS segments, restricted IAV reassortment. Thus, the packaging signals of the HA segment could be an important factor in determining the likelihood that two IAV strains of public health interest will undergo reassortment.


1990 ◽  
Vol 71 (6) ◽  
pp. 1283-1292 ◽  
Author(s):  
E. Hatada ◽  
M. Hasegawa ◽  
K. Shimizu ◽  
M. Hatanaka ◽  
R. Fukuda

Sign in / Sign up

Export Citation Format

Share Document