Simultaneous determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re and 20(S) protopanaxatriol in beagle dog plasma by ultra high performance liquid mass spectrometry after oral administration of a Panax notoginseng saponin preparation

2015 ◽  
Vol 974 ◽  
pp. 42-47 ◽  
Author(s):  
Huichao Wu ◽  
Huimin Liu ◽  
Jie Bai ◽  
Yang Lu ◽  
Shouying Du
Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1925 ◽  
Author(s):  
Binbin Cui ◽  
Jing Yang ◽  
Zhibin Wang ◽  
Chengcui Wu ◽  
Hongrui Dong ◽  
...  

This study has developed a sensitive and simple ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of corydaline, dehydrocorydaline, tetrahydropalmatine, protopine, palmatine, tetrahydroberberine, columbamine, berberine, coptisine and berberrubine in beagle dog plasma after the oral administration of the Corydalis yanhusuo W.T. Wang and Yuanhuzhitong tablets. Chromatographic separation was achieved on an Agilent Eclipse Plus C18 RRHD column (1.8 µm, 50 × 2.1 mm) using a gradient elution program with a mobile phase consisting of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.3 mL/min. A tandem mass spectrometric detection was conducted by multiple reaction monitoring (MRM) mode via an electrospray ionization source in the positive mode. The calibration curves of all analytes showed good linear (r2 > 0.9800). The intra-day and inter-day precisions were less than 15% and the accuracies were within ±15%. The extraction recoveries conformed to the acceptable range. And there was no interference of endogenous substances in the sensitive assay method. All analytes were proven to be stable during sample storage and analysis procedures. The pharmacokinetic study indicated that the Yuanhuzhitong tablets could get a better absorption than Corydalis yanhusuo W.T. Wang.


2021 ◽  
Vol 22 ◽  
Author(s):  
Hui Zhang ◽  
Ruoyu Chen ◽  
Cong Xu ◽  
Ya Zhang ◽  
Qinghua Tian ◽  
...  

Background: Shenqi Jiangtang Granule (SJG), a classical prescription of traditional Chinese medicine, is widely used to treat diabetes and its complications. Despite the clinical efficacy of SJG is effective, pharmacokinetic behavior of various substance in plasma of SJG are unknown. Objective: The aim of this study was to investigate the plasma pharmacokinetics during absorption of SJG after oral administration in rats. Methods: A rapid and accurate ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of eight analytes in SJG, including gomisin D, schisandrin A, schisandrin B, schizandrol A, schizandrol B, ginsenoside Rd, ginsenoside Re and notoginsenoside Ft1. The analysis was carried out on a BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with gradient elution at a flow rate of 0.2 mL/min in a mobile phase consisting of 0.1% formic acid water and acetonitrile. In addition, lignans and saponins were detected in positive ion mode and negative ion mode, respectively. Results: Eight analytes in SJG, including gomisin D, schisandrin A, schisandrin B, schizandrol A, schizandrol B, ginsenoside Rd, ginsenoside Re and notoginsenoside Ft1, showed good linearity (R2 in the range of 0.9955~0.9999). The lower limit of quantification (LLOQ) was 5, 0.8, 0.8, 8, 0.8, 5, 0.6 and 10 ng/mL. Accuracy and precision of all analytes were at ±15%. Matrix effect and average extraction recovery were > 85%. All analytes performed well under four storage conditions. Conclusions: The results showed that in vivo absorption and exposure of gomisin D and ginsenoside Rd were better than other analytes, while schizandrol B and notoginsenoside Ft1 were poorly absorbed. This approach could be applied to study the pharmacokinetic characteristics of various analytes in plasma after oral administration of SJG in rats.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2285 ◽  
Author(s):  
Zhibin Wang ◽  
Wenbo Zhu ◽  
Hua Liu ◽  
Gaosong Wu ◽  
Mengmeng Song ◽  
...  

A rapid, simple and sensitive ultra-performance liquid chromatography-electrospray-ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated for the simultaneous determination of aesculin, aesculetin, fraxetin, fraxin and polydatin in beagle dog plasma for the first time. Plasma samples were pretreated by protein precipitation with methanol. Chromatographic separation was performed on an Acquity UPLC HSS T3 C18 column (2.1 mm × 100 mm, 1.8 μm) with gradient elution at a flow rate of 0.4 mL/min, using a mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). The analytes and IS were detected by multiple reaction monitoring (MRM) via negative ion mode with ion transitions of m/z 339.1–m/z 176.8 for aesculin, m/z 176.8–m/z 88.9 for aesculetin, m/z 206.8–m/z 192.1 for fraxetin, m/z 369.1–m/z 206.9 for fraxin, m/z 389.1–m/z 227.0 for polydatin and m/z 415.2–m/z 295.1 for puerarin. This method was validated according to the FDA guidelines and the results met the requirements of analysis. The calibration curves of analytes were linear with correlation coefficients more than 0.9980. The intra- and inter-day precisions were less than 15% and the accuracy was within ±15%. The maximum plasma concentration (Cmax) of aesculin, aesculetin, fraxetin, fraxin and polydatin was 46.75 ± 7.46, 209.9 ± 57.65, 369.7 ± 48.87, 67.04 ± 12.09 and 47.14 ± 12.04 ng/mL, respectively. The time to reach the maximum plasma concentration (Tmax) was 1.32 ± 0.38 h for aesculin, 1.03 ± 0.27 h for aesculetin, 0.94 ± 0.23 h for fraxetin, 0.83 ± 0.18 h for fraxin and 1.15 ± 0.15 h for polydatin. The results indicated that the absorption of aesculin might be slow in beagle dog plasma. This method was successfully applied for pharmacokinetics in beagle dog plasma after oral administration of the extracts of Ledum palustre L. at a dosage of 0.27 g/kg.


Sign in / Sign up

Export Citation Format

Share Document