Exhaust and non-exhaust emissions from conventional and electric vehicles: A comparison of monetary impact values

2022 ◽  
Vol 331 ◽  
pp. 129965
Author(s):  
Ye Liu ◽  
Haibo Chen ◽  
Ying Li ◽  
Jianbing Gao ◽  
Kaushali Dave ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2030
Author(s):  
Marianna Jacyna ◽  
Renata Żochowska ◽  
Aleksander Sobota ◽  
Mariusz Wasiak

In recent years, policymakers of urban agglomerations in various regions of the world have been striving to reduce environmental pollution from harmful exhaust and noise emissions. Restrictions on conventional vehicles entering the inner city are being introduced and the introduction of low-emission measures, including electric ones, is being promoted. This paper presents a method for scenario analysis applied to study the reduction of exhaust emissions by introducing electric vehicles in a selected city. The original scenario analyses relating to real problems faced by contemporary metropolitan areas are based on the VISUM tool (PTV Headquarters for Europe: PTV Planung Transport Verkehr AG, 76131 Karlsruhe, Germany). For the case study, the transport model of the city of Bielsko-Biala (Poland) was used to conduct experiments with different forms of participation of electric vehicles on the one hand and traffic restrictions for high emission vehicles on the other hand. Scenario analyses were conducted for various constraint options including inbound, outbound, and through traffic. Travel time for specific transport relations and the volume of harmful emissions were used as criteria for evaluating scenarios of limited accessibility to city zones for selected types of vehicles. The comparative analyses carried out showed that the introduction of electric vehicles in the inner city resulted in a significant reduction in the emission of harmful exhaust compounds and, consequently, in an increase in the area of clean air in the city. The case study and its results provide some valuable insights and may guide decision-makers in their actions to introduce both driving ban restrictions for high-emission vehicles and incentives for the use of electric vehicles for city residents.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1046
Author(s):  
Maksymilian Mądziel ◽  
Tiziana Campisi ◽  
Artur Jaworski ◽  
Giovanni Tesoriere

Urban agglomerations close to road infrastructure are particularly exposed to harmful exhaust emissions from motor vehicles and this problem is exacerbated at road intersections. Roundabouts are one of the most popular intersection designs in recent years, making traffic flow smoother and safer, but especially at peak times they are subject to numerous stop-and-go operations by vehicles, which increase the dispersion of emissions with high particulate matter rates. The study focused on a specific area of the city of Rzeszow in Poland. This country is characterized by the current composition of vehicle fleets connected to combustion engine vehicles. The measurement of the concentration of particulate matter (PM2.5 and PM10) by means of a preliminary survey campaign in the vicinity of the intersection made it possible to assess the impact of vehicle traffic on the dispersion of pollutants in the air. The present report presents some strategies to be implemented in the examined area considering a comparison of current and project scenarios characterized both by a modification of the road geometry (through the introduction of a turbo roundabout) and the composition of the vehicular flow with the forthcoming diffusion of electric vehicles. The study presents an exemplified methodology for comparing scenarios aimed at optimizing strategic choices for the local administration and also shows the benefits of an increased electric fleet. By processing the data with specific tools and comparing the scenarios, it was found that a conversion of 25% of the motor vehicles to electric vehicles in the current fleet has reduced the concentration of PM10 by about 30% along the ring road, has led to a significant reduction in the length of particulate concentration of the motorway, and it has also led to a significant reduction in the length of the particulate concentration for the access roads to the intersection.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6423
Author(s):  
Jacek Pielecha ◽  
Kinga Skobiej ◽  
Karolina Kurtyka

One of the environmental aims of the European Union is to achieve climate neutrality by 2050. According to European Parliament data, transport emissions accounted for about 25% of global carbon dioxide emissions in 2016, in which road transport had the largest share (approximately 72%). This phenomenon is particularly visible in urban agglomerations. The solution examples are the popularization of hybrid vehicles and the development of electromobility. The aim of this paper is an assessment of the energy consumption and exhaust emissions from passenger cars fitted with different powertrains in actual operation. For the tests, passenger cars with conventional engines of various emission classes were used as well as the latest hybrid vehicles and an electric car. It enabled a comparative assessment of the energy consumption under different traffic conditions, with particular emphasis on the urban phase and the entire RDE (Real Driving Emissions) test. The results were analyzed to identify changes in these environmental factors that have occurred with the technical advancement of vehicles. The lowest total energy consumption in real traffic conditions is characteristic of an electric vehicle; the plug-in hybrid vehicle with a gasoline engine is about 10% bigger, and the largest one is a combustion vehicle (30% bigger than an electric vehicle). These data may contribute to the classification of vehicles and identification of advantages of the latest developments in conventional, hybrid, and electric vehicles.


2018 ◽  
Vol 88 (6) ◽  
pp. 54-78
Author(s):  
Robert L. Reid
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document