Study of magnetoconductance effect in silicon nanowires formed by chemical etching in HF/AgNO 3 solution: Effect of etching time

2017 ◽  
Vol 463 ◽  
pp. 54-58 ◽  
Author(s):  
B. Chouaibi ◽  
M. Radaoui ◽  
N. Nafie ◽  
A. Ben Fredj ◽  
S. Romdhane ◽  
...  
2012 ◽  
Vol 21 ◽  
pp. 109-115 ◽  
Author(s):  
S. Naama ◽  
T. Hadjersi ◽  
G. Nezzal ◽  
L. Guerbous

One-step metal-assisted electroless chemical etching of p-type silicon substrate in NH4HF2/AgNO3 solution was investigated. The effect of different etching parameters including etching time, temperature, AgNO3 concentration and NH4HF2 concentration were investigated. The etched layers formed were investigated by scanning electron microscopy (SEM) and Photoluminescence. It was found that the etched layer was formed by well-aligned silicon nanowires. It is noted that their density and length strongly depend on etching parameters. Room temperature photoluminescence (PL) from etched layer was observed. It was observed that PL peak intensity increases significantly with AgNO3 concentration.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chien-Wei Liu ◽  
Chin-Lung Cheng ◽  
Bau-Tong Dai ◽  
Chi-Han Yang ◽  
Jun-Yuan Wang

Nanostructured solar cells with coaxial p-n junction structures have strong potential to enhance the performances of the silicon-based solar cells. This study demonstrates a radial junction silicon nanowire (RJSNW) solar cell that was fabricated simply and at low cost using wet chemical etching. Experimental results reveal that the reflectance of the silicon nanowires (SNWs) declines as their length increases. The excellent light trapping was mainly associated with high aspect ratio of the SNW arrays. A conversion efficiency of ∼7.1% and an external quantum efficiency of ∼64.6% at 700 nm were demonstrated. Control of etching time and diffusion conditions holds great promise for the development of future RJSNW solar cells. Improving the electrode/RJSNW contact will promote the collection of carries in coaxial core-shell SNW array solar cells.


2020 ◽  
Vol 92 (3) ◽  
pp. 30402
Author(s):  
Shiying Zhang ◽  
Zhenhua Li ◽  
Qingjun Xu

Aligned and uniform silicon nanowires (SiNWs) arrays were fabricated with good controllability and reproducibility by metal-assisted chemical etching in aqueous AgNO3/HF etching solutions in atmosphere. The SiNWs formed on silicon were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), high-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). The results show that the as-prepared SiNWs are perfectly single crystals and the axial orientation of the Si nanowires is identified to be parallel to the [111] direction, which is identical to the initial silicon wafer. In addition, a series of experiments were conducted to study the effects of etching conditions such as solution concentration, etching time, and etching temperature on SiNWs. And the optimal solution concentrations for SiNWs have been identified. The formation mechanism of silicon nanowires and silver dendrites were also discussed.


2021 ◽  
Vol 17 ◽  
Author(s):  
Abdelbasset Bessadok J ◽  
Mohamed Ben Rabha ◽  
F. Abdulraqeb Ahmed Ali ◽  
Salim Mokraoui ◽  
Lotfi Khezami

Introduction: Silver nanoparticle (AgNP)-based chemical etching is applied to produce silicon nanowires (SiNWs) on monocrystalline silicon. Methods: The effect of etching time on the production of silicon nanowires and on optical and optoelectronic properties was studied. Results: Using this approach, surface recombination velocity (Seff) and the effective lifetime (τeff) evolution of SiNWs after passivation were improved, and SiNWs obtained in the optimal time of 20 min, exhibited shallow reflection of 1% in the wavelength range of 300–1100 nm. Conclusion: Thus, passivated solar cell-based SiNWs in an HF/HNO3/H2O solution were essential for increasing the efficiency of solar cell-based SiNWs from 9% to nearly 15%.


Author(s):  
Eman S. M. Ashour ◽  
M.Y. Sulaiman ◽  
N. Amin ◽  
Z. Ibrahim

A synthesis of vertical silicon nanowire array through metal-assisted chemical etching of highly doped p-type silicon wafers (100) in a solution of hydrofluoric acid and silver nitrate has been proposed. . The influences of the growth parameters such as solution concentration, etching time have been investigated. In addition, we consider other common parameters like wafer resistivity and temperature, which rely on the silicon nanowires formation. The results indicate that the silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer. Furthermore, They provide excellent antireflection property with a low reflection loss of 3% for incident light within the wavelength range of 200–900 nm. Such nanowire arrays may have potential applications as antireflection surface for silicon solar cells


2018 ◽  
Author(s):  
Ong Pei Hoon ◽  
Ng Kiong Kay ◽  
Gwee Hoon Yen

Abstract Chemical etching is commonly used in exposing the die surface from die front-side and die backside because of its quick etching time, burr-free and stress-free. However, this technique is risky when performing copper lead frame etching during backside preparation on small and non-exposed die paddle package. The drawback of this technique is that the copper leads will be over etched by 65% Acid Nitric Fuming even though the device’s leads are protected by chemical resistance tape. Consequently, the device is not able to proceed to any other further electrical measurements. Therefore, we introduced mechanical preparation as an alternative solution to replace the existing procedure. With the new method, we are able to ensure the copper leads are intact for the electrical measurements to improve the effectiveness and accuracy of physical failure analysis.


Nano Letters ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 2310-2317
Author(s):  
Maxime Gayrard ◽  
Justine Voronkoff ◽  
Cédric Boissière ◽  
David Montero ◽  
Laurence Rozes ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (71) ◽  
pp. 45101-45106 ◽  
Author(s):  
Gangqiang Dong ◽  
Yurong Zhou ◽  
Hailong Zhang ◽  
Fengzhen Liu ◽  
Guangyi Li ◽  
...  

High aspect ratio silicon nanowires (SiNWs) prepared by metal-assisted chemical etching were passivated by using catalytic chemical vapor deposition (Cat-CVD).


2017 ◽  
Vol 32 (4) ◽  
pp. 043004 ◽  
Author(s):  
Alessia Irrera ◽  
Maria Josè Lo Faro ◽  
Cristiano D’Andrea ◽  
Antonio Alessio Leonardi ◽  
Pietro Artoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document